
00

What is Arduino
Project 0

www.dfrobot.com

What is Arduino?

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and
software. It is intended for artists, designers, hobbyists and anyone interested in creating interactive objects
or developing environments.
Arduino can sense its environment by receiving inputs from sensors, and interact with its environment by controlling
lights, motors, or other actuators. The Arduino integrated development environment (IDE) is a cross-platform
application written in Java, and is derived from the IDE for the Processing programming language and wiring
projects. It can run independently and communicate with other software such as Flash, Processing, MaxMSP
and more. Arduino IDE is open source so you can download and share thousands of interactive projects for
free!

// make sound notification when coffee is done
// email notification via mobile
// blinking fluffy toy
// Professor X’s steam punk wheel chair with voice recognition and drink serving function
// a Star War arm gun
// a pulse monitor to store data when biking
// a robot that can run in snow and draw pictures on the floor

Here are some Arduino projects just to give your some ideas of tasks it can complete.

DFRobot 0100. What is Arduino

History

Arduino UNO

Arduino started in 2005 as a project for students at the Interaction Design Institute Ivrea in Ivrea, Italy. At that
time, programming students used a "BASIC Stamp" for projects. This was at a cost of $100, considered expensive
for students.
Massimo Banzi, one of the founders of Arduino, taught at Ivrea. The name "Arduino" comes from a bar in Ivrea
where some of the founders of the project used to meet. The bar itself was named after Arduino, Margrave of
Ivrea and King of Italy from 1002 to 1014.
Colombian student Hernando Barragan contributed a hardware thesis for a wiring design. After the wiring
platform was complete, researchers worked to make it lighter, less expensive, and available to the open source
community. The school eventually closed down, so these researchers, including a man called David Cuartielles,
promoted the idea. This idea was to become the Arduino as we know it today.

Now let’s take a close look at the Arduino micro-controller and try to locate I/O ports (input/output) and on
board LEDs.

DFRobot

Digital Pins 0~13
(PWM Pins 3,5,6,9,10,11)

Power
Indicator

Analog Pin 0~5
3.3V Output

DC Power Jack
(6~12V)

Port Communication
Indicator

D13 Pin Signal
Indicator

USB Port

Reset

5V Output

◆ I/ O pins, digital pins 0-13, analog pins 0-5.
◆ 2 power sources. One is the USB port that can draw power from the USB connection. Another is power jack that
inputs DC power of 6-12 volts.
◆ 4 LEDs and reset button. L is the on board LED that connects with digital pin 13. TX and RX are indicators of
transmission signal and received signal. When we download a sketch to the Arduino, these two lights blink,
indicating that data is being transmitted and received.

0200. What is Arduino

First Use

1. Download Arduino IDE

Go to
http://arduino.cc/en/Main/Software
to download the installation file
according to your operation system.

For Windows users, please follow
the instructions below. For Mac
and Linux users, you can directly use
the Arduino sketch by simply
clicking on the file.

DFRobot 0300. What is Arduino

2. Install the drivers
Installing drivers for the Arduino

Plug in your board and wait for
Windows to begin its driver
installation process. After a few
moments, despite its best ef-
forts, the process will fail, but
do not panic! Click on the Start
Menu, and open up the Control
Panel.

Find nnnUUU kkk ooonnn www nnn DDD vvveee iii eeeccc and then
right click and select UUU eeetttaaadddppp
DDD rrreeevvviiirrr SSSoooffftttwww eeerrraaa .

DFRobot 0400. What is Arduino

Choose ooorrr www mmmoooccc yyymmm eeesss rrreeetttuuu fff rrrooo
ooosss rrreeevvviiirrrddd ffftttwww eeerrraaa to search for dri-

vers manua y

Click eeessswwwooorrrBBB and find the
director location of the Arduino
IDE where the installation files
are located . Inside this director
will be another director named

sssrrreeevvviiirrrDDD . elect it and click tttxxxeeeNNN .

DFRobot 0500. What is Arduino

This dialog indicates successful
installation. Hopefull this is what
ou will see! f not double check
our steps and tr again.

If you go back to your device
manager, the Arduino device
should now be recognised by your
computer.

Go to “ eeeccciiivvveeeDDD rrreeegggaaannnaaaMMM ” >“ tttrrroooPPP sss
 MMMOOOCCC(((&&&)))TTTPPPLLL ”. You should see

“ ooonnniiiuuudddrrrAAA MMMOOOCCC(((ooonnn ###)))”. This is the
COM port that your computer uses
to transfer data to your Arduino. In
our example the computer com-
municates with the Arduino on
COM36.

Remember your COM number as
you will need it later.

DFRobot 0600. What is Arduino

0700. What is ArduinoDFRobot

4. Upload a Blink program

Open Arduino IDE and take a moment to move your mouse along each icon to get to know their functions.
Here we will use a very basic sample code, BBB kkknnniiilll to go through the whole process and test whether the
controller is working.

Open the LED blink example sketch. You will find it under >>> ssseeelllpppmmmaaaxxxEEE >>> eeellliiiFFF 000 kkknnniiilllBBB >>> sssccciiisssaaaBBB...111 .

0700. What is Arduino

DFRobot

“VVVeee ” from
instructions that the computer can understand.

d mmm iiillliiippp nnnggg...

0800. What is Arduino

The code we are using should not have errors since it is an example
code. If a code does have errors in it it will fail to verify.

Time to download the code to your Arduino! Select your micro
troller by sele ting “ ”.

Then sele t your C M port by sele ting “ eeeSSS aaaiiirrr lll PPP rrrooo ttt” and sele ting the
C M port number you saw earlier. In our example C M36 is in use.

DFRobot 0900. What is Arduino

10DFRobot 00. What is Arduino

C “ pload”
Arduino.

After it is finished, the Arduino will run the code automatically and
the onboard LED will start to blink, just as programmed!

RRReeevvv wwweeeiii

In order to upload od must do the following steps:

 dddoooCCC eee eeesssoooooohhhCCC >>> BBB dddrrraaaooo dddnnnaaa PPP tttrrrooo >>>

...

01

Project 1
LED Flashing

www.dfrobot.com.cn

01DFRobot 01. LED Flashing

Let's get started!
Let’s kickstart our Arduino adventure! In the first lesson, you will learn

the basics of components such as LEDs, buttons and resistors - includ-

ing pull-up and pull-down resistors. Additionally, you will start to write

Arduino sketches to control a LED with your Arduino.

02DFRobot 01. LED Flashing

LED Flashing
In use the Blink on- .

T can have a clear idea of how a LED works and how they can be used in a circuit.

*You may need to choose a different value resistor depending on the
LED you will use. We will mention how to calculate resistance value in
the latter part of this lesson.

*DFRduino is DF Robot’s signature Arduino board and functions the
same as any other Arduino board.

Required Components:

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x1Resistor 220R x15MM LEDx2Jumper
M/M

DFRduino UNO R3
USB cable

Prototype Shield
with Breadboard

03DFRobot 01. LED Flashing

Hardware

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

+-

-

Fig 1-1 LED Flashing Circuit

build the circuit Prototype
Shield on top of it.

bottom of the Prototype Shield should line up
and slide in to the f . Be gentle and be
careful not to bend them.
Peel the adhesive strip off the back of the Breadboard and then stick it on
to the Prototype Shield. ou can now set up the circuit according to the
picture below.

 is standard practice to use wires of different colored insulation for
your own reference, but using different combinations of colors wont
stop the circuit working.

Normally red wire indicates power supply (ccccccVVV), black wire indicates
ground (DDDNNNGGG), green wire indicates digital pins, blue wire indicates analog
pins, and white is other.

Double check the orientation of LED leads on the circuit. oooppp era sDEL ---
iiirrraaalll zzz .)dnuora yaw tcerroc eht tiucric eht ni decalp fi krow ylno lliw(dddeee he

long leg of the LED connects to Vcc. (In this e ample Pin 10) and the short
leg connects to GND.

When you finish the circuit, connect the Arduino controller and computer
with the provided

FFFDDD nnnoooiiitttiiinnniiifffeeeDDD gggnnniiirrriiiWWW sss :::

nnneeeeeerrrGGG latigiD::: Connections

eeeuuulllBBB ::: nalog Connections

::: Power Supply

kkkcccaaalllBBB :::

eeetttiiihhhWWW ::: Other

04DFRobot 01. LED Flashing

Arduino Sketch

The sample code 1-1:

Open the Arduino IDE and enter the code as sample code 1-1 shows.
(We highly recommend you type code instead of copying and pasting so
that you can develop your coding skills and learn to code by heart.)

When you ve finished entering the code, click on yyyfffiiirrreeeVVV to check
if the code can be compiled. If the code has no errors, click

dddaaaooolllpppUUU to upload code to the micro-controller. Now your onboard
LED should be blinking on and off.

//Project -- Blinking a LED
/*
 Description: turn LED on and off every other second.
*/
int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {
 digitalWrite(ledPin,HIGH);
 delay(1000);
 digitalWrite(ledPin,LOW);
 delay(1000);
}

05DFRobot 01. LED Flashing

What is
a variable?

Comments: Multi-Line Comments: Declaring Variables:

A variable is a place to store a piece of data. It has a name, a value, and a type. In the above

e ample, “int” (integer) is the type, “ledPin” is the name and “10” is the value. In this e ample

we’re declaring a variable named ledPin of type “int” (integer), meaning the LED is connected

to digital pin 10. Variables display as orange te t in the sketch.

Integers can store numbers from -32768 to 32767. You must introduce, or declare variables

before you use them. Later on in the program, you can simply type the variable name rather

than typing out the data over and over again in each line of code, at which point its value will

be looked up and used by the IDE.

When you try to name a variable, start it with a letter followed with letter, number or

underscore. T .evitisnes esac si)CCC(gnisu era ew egaugnal eh There are certain names that you

cannot use such as “main”, “if”, “while” as these have their own pre-assigned function in the IDE.

Don’t forget the variable names are case-sensitive!

Similar to single line comments,
any text between / * and * / will
be ignored by the compiler. Once
again, the Arduino IDE will turn
this text grey to show that it is is
commented out. This is a useful
way of annotating code.

Declaring variables is a useful way
of naming and storing values for
later use by the program. eeetttnnnIII ---

 srebmun tneserper)tni(sssrrreeeggg
ranging from -32768 to 32767.
In the above example, we have
input an integer: 10. “ ” is
the variable name we have chosen.
Of course, you may name it
anything you like instead of
ledPin, but it's better to name the
variable according to its function.
Here the variable ledPin indi-
cates that the LED is connected to
Pin-out 10 of Arduino.
Use a semicolon (;;;))) to conclude
the declaration. If you don’t use
the semicolon, the program will not
recognise the declaration, so this is
important

/ * the text between these two
symbols will be commented out;
the compiler will ignore the text
and the text will appear gray * /

CODE

type
of variables

name
of variables

int ledPin = 10;

It is so called variable declaration. A
variable is for data storage.In this
sample, integers(int) are applied
which represent numbers range
from -32768 to 32767.The storage
content decides the variable
type.Here we input 10, an integer.

variable name is the name of the
variable, standing for the value.Of
course, you may name it at will
instead of ledPin), but it's better to
name the variable according to its
function.lHere the variable ledPin
indicates that the LED is connected
to Pin-out 10 of Arduino.
Please use a ";" to conclude the
declaration.The semicolon under
English input method is necessary.

Any line of code that has “//” put
before it will not be compiled by
the complier. The Arduino IDE
indicates this by turning the line
of code grey automatically. This
allows you to write plain English
descriptions of the code you or
others have written and makes it
easier for other people who might
not be able to read code to
understand. We refer to this as
commenting out.

06DFRobot 01. LED Flashing

The setup() function The function format is as follows: In this e ple there is only
one line in the setup() function:
pinMode

This function is used to define
digital pin working behavior. Dig-

 tttuuupppnnniii na sa denifed era snip lati
 .)TUPTUO(tttuuuppptttuuuooo na ro)TUPNI(

In the e ample above you can
see brackets containing two
parameters: the variable (ledPin)
and its behaviour (OUTPUT).

The setup() function is read by
the Arduino when a sketch
starts. It is used it to initialize
variables, pin modes, initialize
libraries, etc. The setup function
will only run once after each
power-up or reset of the Ar-
duino board.

“ eeedddoooMMMnnniiippp ” configures the spec-
ified digital pin to behave either
as an input or an output. It
has two parameters:
“ nnniiippp ”: the number of the pin
whose mode you wish to set
“ eeedddooommm ”: INPUT, OUTPUT,
or INPUT_PULLUP.

If you want to set the digital pin
2 to input mode, what code
would you type?

:::rrreeewwwsssnnnAAA pinMode (2, INPUT);

void setup () {}

pinMode(ledPin, OUTPUT);

pinMode

Function Segmenting code into functions allows a programmer to create modular
pieces of code that perform a defined task and then return to the area of
code from which the function was "called". The typical case for creating a
function is when one needs to perform the same action multiple times in a
program.
There are two required functions in an Arduino sketch, setup() and loop().
Other functions must be created outside the brackets of those two
functions.

Difference of
INPUT and

OUTPUT

INPUT is signal that sent from outside events to Arduino such as button.
OUTPUT is signal that sent from Arduino to the environment such as LED
and buzzer.

Empty
b kets

Pin Mode
(OUTPUT/INPUT)

No return
value function

07DFRobot 01. LED Flashing

digitalWrite(ledPin,HIGH);

The Relation
of pinMode(),
digitalWrite()
and
digitalRead()

If we scroll further down, we can
see the main part of the code.
T pppoooooolll eht si sih .

Look at the loop () function within
the first statement.
This involves another function:
digitalWrite ().

The function format is as follows:

The Arduino program must
include the setup () and loop ()
function, otherwise it won t work.
After creating a setup() function,
which initializes and sets the initial
values, the loop() function does
precisely what its name suggests,
and loops consecutively, allowing
your program to change and
respond. Use it to actively control
the Arduino board. Here we want
to control the LED constantly on
and off every other second.
How can we make that happen?

In this project we want the LED
to turn on for 1 second and then
turn off for 1 second, and re-
peat this action over and over.
How can we express this in code?

If pinMode configures a digital pin to behave as an input, you should use the
digitalRead() function. If the pin is configured as an output, then you should use
digitalWrite().
NOTE: If you do not set the pinMode() to OUTPUT, and connect an LED to a pin, when
calling digitalWrite(HIGH), the LED may appear dim. This is because without explic-
itly setting a pin-Mode(), digitalWrite() will enable the internal pull-up resistor, which
acts like a large current-limiting resistor.

digitalWrite writes a HHHGGGIIIHHH (on)
or a WWWOOOLLL (off) value to a digital
pin. If the pin has been
configured as an OUTPUT
with pinMode(), its voltage will
be set to the
corresponding value: 5V (or
3.3V on 3.3V boards) for HIGH
and 0V (ground) for LOW. Please
note that digitalWrite() is ap-
plied only under the condition
that pinMode() is set as
OUTPUT. Why? Read on

void loop() {
 digitalWrite(ledPin,HIGH);
 delay(1000);
 digitalWrite(ledPin,LOW);
 delay(1000);
}

 Pin Value HIGH/LOW

digitalWrite (pin , value)；

e.g. LED, Buzzer e.g. Press button control

pinMode(pin,OUTPUT)

)nip(daeRlatigid)WOL/HGIH,nip(etirWlatigid

pinMode(pin,INPUT)

08DFRobot 01. LED Flashing

Next：

delay() pauses the program for the
amount of time specified (in
miliseconds). (There are 1000 mil-
liseconds in 1 second.)

delay(1000);

09DFRobot 01. LED Flashing

Hardware

Breadboard

constructing and testing circuits
without having to permanently
solder them in place. Components
are pushed into the sockets on
the breadboard and then extra

to make
connections.

The breadboard has two columns,
each with 17 strips of connections.
In this diagram the black lines
show how the top row is connect-
ed. This is the same for every other
row. The two columns are isolated
from one-another.

vi
ty Direction

Fig 1-3 DIP Chip Inserted

10DFRobot 01. LED Flashing

The resistor value will be marked
on the on the outer package of
your resistors, but what should we
do in case the label gets lost and
there are no measuring tools at
hand? The answer is to read the
resistor value. This is a group of
colored rings around the resistor.
Details are available online for
those who are interested in having
a try.

Here is an online calculator for
five-color-ring resistor value
calculating: http://www.21ic.com/
tools/compo nent/
201003/54192.htm

As the name suggests, resistors
resist the flow of electricity. The
higher the value of the resistor, the
more resistance it has and
the less electrical current will flow
through it. The unit of resistance

 si hcihw ,mmmhhhOOO eht dellac si
usually (
letter Omega).
Unlike LEDs, resistors are
not polarized (do not have a
positive and negative lead) - they
can be connected either way
around. Normally a LED needs
2V of voltage and 35 mA cur-
rent to be lit, so with a resistor of

would be able to
control the flow

 you might risk
burning it out. Be careful of this
because resistors can ge hhh t ooottt!

Resistors Read Resistor Color Rings

If you want to read the resistance
value from the resistor color code,
visit this website for cal-
culation tables: http://www.
21ic.com/tools/compo nent/
201003/54192.htm

1 1DFRobot 01. LED Flashing

A light-emitting diode (LED) is a
two-lead semiconductor
light

diode, which emits light
when activated.

Typically, LEDs have two leads,
one positive and one negative.
There are two ways to tell which
is the positive lead of the LED
and which the negative: Firstly,
the positive lead is longer. Sec-
ondly, where the negative lead
enters the body of the LED, there
is a flat edge to the case of the
LED.

iiirrraaallloooppp era sDEL zzz evah yeht os ,dddeee
to be connected the right way
around. If you put the negative lead
of an LED in to the power supply
and the positive lead to ground,
the component will not wor , as
can be seen in the diagram to the
right.

n your it, you can also find LEDs
with 4 leads. This is an
with 3 primary color LEDs
embedded in to it. This will be
explored later.

LEDs

02

S.O.S distress signal
Project 2

www.dfrobot.com.cn

01DFRobot 02. S.O.S distress signal

Sample code 2-1:

// 3 quick blinks to represent “S”
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 delay(100); //100 milliseconds as a break of each
letter

Let’s build a Morse code generator with the circuit we built in lesson 1. Morse code is a
method of transmitting text information as a series of on-off tones, lights, or clicks. We can
use a slow blink and quick blink of an LED instead of dots and dashes to indicate letters of
the alphabet. For example, SOS. According to Morse code, “S” is represented with 3 dots
which we can represent with a slow blink, while “O” is represented with 3 dashes which we
can represent with a quick blink.

int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {

// 3 quick blinks to represent “S”
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 delay(100); //100 milliseconds as a break of each
letter

int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {

 //3 quick blinks to represent “0”
 digitalWrite(ledPin,HIGH);
 delay(400);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(400);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(400);
 digitalWrite(ledPin,LOW);
 delay(100);

 delay(100);
 // 100 milliseconds delay between each letter

 //3 quick blinks to represent “S” again
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 ;)0005(yaled // wait 5 seconds to repeat the
next S. O.S signal
}

02DFRobot 02. S.O.S distress signal

 //3 quick blinks to represent “0”
 digitalWrite(ledPin,HIGH);
 delay(400);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(400);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(400);
 digitalWrite(ledPin,LOW);
 delay(100);

 delay(100);
 // 100 milliseconds delay between each letter

 //3 quick blinks to represent “S” again
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);

 ;)0005(yaled // wait 5 seconds to repeat the
next S.O.S signal
}

//The second project -- S.O.S signal
int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {
 //3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100); 　　
 }

 //100 milliseconds delay between of each letter
 delay(100);

 //3 quick blinks to represent “O”
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(400); 　　
 digitalWrite(ledPin,LOW);
 delay(100); 　　　
 }

 //100 milliseconds delay between of each letter
 delay(100);

03DFRobot 02. S.O.S distress signal

CODE

Sample code 2-2:

It requires a lot of repetitive work to code like this. Is there a better way? Take a look at the following
sample code.

//The second project -- S.O.S signal
int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {
 //3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100); 　　
 }

 //100 milliseconds delay between of each letter
 delay(100);

 //3 quick blinks to represent “O”
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(400); 　　
 digitalWrite(ledPin,LOW);
 delay(100); 　　　
 }

 //100 milliseconds delay between of each letter
 delay(100);

//configure LED on
//delay 150 milliseconds
//configure LED off
//delay 100 milliseconds

//configure LED on
//delay 400 milliseconds
//configure LED off
//delay 100 milliseconds

//The second project -- S.O.S signal
int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {
 //3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100); 　　
 }

 //100 milliseconds delay between of each letter
 delay(100);

 //3 quick blinks to represent “O”
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(400); 　　
 digitalWrite(ledPin,LOW);
 delay(100); 　　　
 }

 //100 milliseconds delay between of each letter
 delay(100);

//The second project -- S.O.S signal
int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {
 //3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);

 }

 //100 milliseconds delay between of each letter
 delay(100);

 //3 quick blinks to represent “O”
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);

 digitalWrite(ledPin,LOW);

 }

 //100 milliseconds delay between of each letter
 delay(100);

 // 3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);
 }

 // wait 5 seconds to repeat the next S.O.S signal
 delay(5000);
 }

 // 3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);
 }

 // wait 5 seconds to repeat the next S.O.S signal
 delay(5000);
 }

04DFRobot 02. S.O.S distress signal

After uploading the code, you will see the LED blinking the S.O.S signal and repeating it after 5 seconds.
If you were to put the circuit in to a water-proof case, you could use it for sailing or hiking!

 // 3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);
 }

 // wait 5 seconds to repeat the next S.O.S signal
 delay(5000);
 }

//configure LED on
// delay 150 milliseconds
//configure LED off
//delay 100 milliseconds

 // 3 quick blinks to represent “S” again
 for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);
 }

 // wait 5 seconds to repeat the next S.O.S signal
 delay(5000);
 }

05DFRobot 02. S.O.S distress signal

CODE

The first part of the two sketches are identical: we have initialized a variable and configured digital pin 10 to carry
out the output signal. In the main code loop(), you can find lines similar to the last project to turn the LED on
and off. The difference here is that the main code contains 3 independent blocks of statements.

 eht ni tnemetats“ ro“f eht rof oS .stod 3 tuptuo ot si kcolb tsrif ehT
sketch

There are three parts to the “for” loop header:

The “ rrrooofff ” statement
The “for” statement is used to repeat a block
of statements enclosed in brackets. An increment
counter is usually used to increment and terminate the
loop. The “for” statement is useful for any
repetitive operation, and is often used in combi-
nation with arrays to operate on collections of data/
pins.

Step 1: I
Step 2: Evaluate if x is less than 3.
Step 3: If it is valid, execute the following statement
Step 4: x increases and becomes 2.
Step 5: Repeat Step 2 less than
3.
Step 6: Repeat step 3

Until x=3, the condition of x<3 is not valid then the
program skips over the code.

We set x<3 to have it repeat 3 times. Calculating from 0
to 2, it repeats 3 times.

If we wanted it to repeat 100 times, we can use the fol-
lowing code: for(int x=0;x<100;x++){}

Some comparison operators like ">", "<" are
frequently used in programming conditional
statements. They will covered in more detail in the next
section.

for(int x=0;x<3;x++){
 digitalWrite(ledPin,HIGH);
 delay(150);
 digitalWrite(ledPin,LOW);
 delay(100);
 }

for()

}

Condition is true

for(int x=0;x<3;x++){
 ……
}

//configure LED on
//delay 150 milliseconds
//configure LED off
//delay 100 milliseconds

1 2 4

3

06DFRobot 02. S.O.S distress signal

 si "<<<" an example of a compar-
ison operator. Comparison op-
erators allow the Arduino to com-
pare two values. Below are some
more examples of frequently used
comparison operators:

ow you should know how the
for loop operates. There are 3 for

loops in the code. The first for
loop repeats 3 times and the
long-lasting flashing alternates 3
times, giving an output of 3 dots
representing the letter S in Morse
code. The second for loop also
repeats 3 times and the temporary
flashing alternates 3 times, giving
an output of 3 dashes , repre-
senting the letter O in Morse code.
The third for loop is identical to
the first, and also outputs an S in
Morse code.

Beware of accidentally using a
single equals sign (e.g. if (x = 10)).
The single equals sign is the as-
signment operator, and sets x
to 10 (puts the value 10 into the
variable x). A double equals sign
is comparison operator instead
(e.g. if (x == 10)),
Also, be careful that there is no
space between <= or >=.

You can also use arithmetic
operators such as + - * / .

==（equal）
!=（not equal）
<（less than）
>（greater than）
<=（less than or equal）
 >=（greater than or equal）

Here are some common operators that you might use:

You might notice there are various
x variables in different blocks of
code, but they don’t interfere with
each other. Because it has a
limited scope in a specific block of
function. It is the counterpart of
global variables that needs to
declare at the top of the code out
of setup() and loop()function and
you will be able to use it anywhere
in the code.

07DFRobot 02. S.O.S distress signal

Let’s make some traffic lights by us-
ing 3 digital pins to control 3 LED
lights.

Exercise

red light

5S 2S 5S 2S
yellow light

green light

03

Interactive traffic lights
Project 3

www.dfrobot.com

Interactive traffic lights

You will start your first interactive Arduino project in this lesson by making button-controlled traffic lights. When

the button is pressed, the lights will change for pedestrians to pass by.

*Why are there 5 LEDs with 6 resistors?
The extra resistor is a pull-down resistor for the button.

*After this, we won t list the Arduino, Breadboard, Prototype Shield or
Jumpers in the component list any more as they will be necessary for every
project.

Required Components:

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x6Resistor 220R x1Pushbuttonx13M/M
Jumper Cables

Prototype Shield

x15MM LEDx25MM LED x25MM LED

DFRobot

DFRduino UNO R3

0103. Interactive traffic lights

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig 3-1 Wiring Diagram of LED Blinking

Follow the wiring diagram below to build your circuit.
Please note that the green lines represent socket connections and do not
represent the color of wire you must use.
Only use the provided USB cable to power the Arduino after you build
the circuit. This cable provides a steady 5V to the Arduino. If you use
another power source, there is a chance the voltage might be too high,
which might overload the components.

DFRobot

Circuit

0203. Interactive traffic lights

Code

Sample code 3-1:

The sketch is originally from “Beginning Arduino”

// PROJECT 3 Interactive Traffic Light
int carRed = 12; //configure traffic light
int carYellow = 11;
int carGreen = 10;
int button = 9; //pin of button
int pedRed = 8; //configure light for pedestrians
int pedGreen = 7;
int crossTime = 5000; //time for pedestrians to pass unsigned
long changeTime; //time that the button is pressed

void setup() {
 //configure all LEDs as output
 pinMode(carRed, OUTPUT);
 pinMode(carYellow, OUTPUT);
 pinMode(carGreen, OUTPUT);
 pinMode(pedRed, OUTPUT);
 pinMode(pedGreen, OUTPUT);
 pinMode(button, INPUT); //configure button as input
 digitalWrite(carGreen, HIGH); //initialize green traffic
light on

 digitalWrite(pedRed, LOW); //initialize red pedestrian light off }

void loop() {
 int state = digitalRead(button);
 // test if the button is pressed and if 5 seconds have passed after it is pressed
lately.
 if(state == HIGH && (millis() - changeTime)> 5000){
 //carry out the function of changing LED
 changeLights();
 }
}
void changeLights() {

DFRobot 0303. Interactive traffic lights

After uploading the sketch, take a
look at how LED changes. First,
the green traffic light is
on and the red pedestrian
light is on to allow cars to pass.
Once you press the button,
the pedestrian light changes
from red to green and the traffic
light changes from just green to
green and red. There is then a
delay allowing time for pedes-
trians to cross the street.
When the delay comes to the
end, the green pedestrian light
blinks to notify pedestrians.
When this finishes, the lights
change back to the initial state
with the green traffic light on
and red pedestrian light on.

The above codes do look
complex, but actually, it is not that
difficult to understand the ideas in
practice.

If you find it is difficult for you to
follow, try to draw a diagram like
the one in the homework
of Project 2. This will help
you to comprehend the
codes a little better. Good luck!

DFRobot

 digitalWrite(carGreen, LOW); //green traffic light off
 digitalWrite(carYellow, HIGH); //yellow traffic light on
 delay(2000); //wait for 2 secs

 digitalWrite(carYellow, LOW); // yellow traffic light off
 digitalWrite(carRed, HIGH); //red traffic light on
 delay(1000); // wait for 1 sec for safety reason

 digitalWrite(pedRed, LOW); //red pedestrian light off
 digitalWrite(pedGreen, HIGH); //light pedestrian light on

 delay(crossTime); // time for crossing street

 //blink green pedestrian light to notify pedestrians to pass soon
 for (int x=0; x<10; x++) {
 digitalWrite(pedGreen, HIGH);
 delay(250);
 digitalWrite(pedGreen, LOW);
 delay(250);
 }
 digitalWrite(pedRed, HIGH); //red pedestrian light on
 delay(500);

 digitalWrite(carRed, LOW); //red traffic light off
 digitalWrite(carYellow, HIGH); //yellow traffic light on
delay(1000);
 delay(1000);
 digitalWrite(carYellow, LOW); //yellow traffic light off
 digitalWrite(carGreen, HIGH); //green traffic light on

 changeTime = millis() // record the duration since last
 change
 //back to the loop of main code
}

0403. Interactive traffic lights

Based on the previous 2 projects, most of the
codes should make sense for you. The codes start
from a set of variable declarations, but we have used
a new term. It is e plained below:

Then we enter the setup() function to configure the
LED and button.

Code

DFRobot

unsigned long changeTime; pinMode(button, INPUT);

Can the
box of variable
be infinite big?

Why can some variables store large amounts of data while some can’t? It
depends on storage space of the variable, a bit like a box. For example,
the storage capacity of int is much smaller than unsigned long .
Just like a computer has a limited storage space, a micro-controller, like
your Arduino, is the same. The maximum storage space of Arduino
UNO’s main chip (Atmega328 is 32k, so if we can save some storage
space, we should definitely do that.

Some common variables you will come across

There are various type of variables. Int and long are for integers, char is for
characters, float and double are for variables with decimal point.

Data Type RAM

1 byte

1 byte

1 byte

2 byte

2 byte

4 byte

4 byte

4 byte

4 byte

Range

boolean

char

unsigned char

int

unsigned int

long

unsigned long

float

double

-128 ~ 127

0~255

-32768 ~ 32768

0 ~ 65535

-2147483648 ~ 2147483647

0 ~ 4294967295

-3.4028235E38 ~ 3.4028235E38

-3.4028235E38 ~ 3.4028235E38

0 ~ 1（True or False）

0503. Interactive traffic lights

We have been quite familiar with pinMode() function
introduced in Project 1.Its differen ce with LED
project lies in that the button should be set as INPUT.
In setup() function, please initialize the pedestrian and
traffic light:
digitalWrite(carGreen, HIGH); //initializing green traffic
light on
digitalWrite(pedRed, LOW); //pedestrian red light on

The first line of the main sketch is to test the state of
button in pin9.

int state = digitalRead(button);

Before we use int to store integers from -32768 to
32767. The long command we use in this project can
store integers from -2147483648 to 2147483647.
Unsigned long cannot store negative numbers. So it
stores integers from 0 to 4294967295.
If we use int, we might go over the limit of 32 seconds
(32768ml sec) and risk having errors in running the
sketch.As a result, we need another command to store
integers and exclude negative numbers, such as
unsigned long whose limit is 49 days.

In the setup() function, there is a
new command digitalRead() !

Here we use the if() command
to test conditions.

This is a command inside the if()
command.

This command is used to read
the digital pin’s state, whether
high (1) or low (0).The command
has one parameter: pin number .

This command passes the signal
read to the variable state
for tnemgduj rehtruf .

When state value is HIGH or 1,
it means that the push button
has been pressed.
When state value is LOW or
0, it means that the push but-
ton hasn't been pressed.

We can check the value of state
to test if the button is pressed.

if(state == HIGH && (millis()
changeTime)> 5000) {

//carry out light-changing
command
 changeLights();

}

If the condition specified in the
parenthesis is satisfied, it carries
out the statement. If not, the
program skips over the code.

In other words, if the if expression
returns TRUE, the statement is run.
If it returns FALSE, the statement is
skipped.

In the above codes, the first
condition is whether variable state
is HIGH (or on). When the push
button is pressed, the state turns
HIGH. The second condition is
that value returns for millis()
minus that for change Time is
more than 5000.

W e u s e "&&" to connect the two
conditions. This is a logical op-
erator, showing that we want the
above two conditions met at the
same time.

millis() is a command that returns
the number of milliseconds since
the Arduino board began running
the current program. This number
will overflow (go back to zero),
after approximately 50 days.
Here we use it to calculate if there
is a break of more than
5 seconds when pressing
button more than once. If
shorter than 5 seconds, it skips
over the code to avoid errors
caused by accidentally pressing
the button.

This is a function created outside of
loop() function. When we want to
use it, we just need to cite the name
of the function. It has not returned
a value and does not need to
pass parameters so it is a void
function. When it is used, the pro-
gram will run the function and go
back to the main code afterwards.
Beware not to miss the parenthe-
sis when using this function as
otherwise it will not be recognised.

DFRobot

changeLights();

Logical Operators

Some other common boolean
operators:

pin

digitalRead (pin) if(condition){
 Statement;
}

&& ——logic and (True only
if both conditions are true)
|| —— logic or (True if
either condition is true)
！—— logic not (True if the
condition is false)

0603. Interactive traffic lights

If it reaches the condition in the
parenthesis, it carries out the
following statement. If not,the
program skips over the code.
An expression refers to the
criterion for judging, which are
usually in the form of relation or
logic. In addition, it also refers to a
value directly.An expression refers
to the criterion for judging, which
are usually in the form of relation
or logic. In addition, it also refers to
a value directly.If the IF expression
returns TRUE, run if statement. If it
returns FALSE, skip if statement.
In the above codes, the first
condition is whether variable state
is HIGH.When the push button is
pressed, state turns HIGH.The
second condition is that value
returns for millis() minus that for
change Time is more than
5000.There should be "&&"
connecting the two conditions.It is
a logical operator, standing for
meeting the above two conditions
at the same time.
Millis() is a command that returns
the number of milliseconds since
the Arduino board began running
the current program. This number
will overflow (go back to zero),
after approximately 50 days. Here
we use it to calculate if there are a
break of more than 5 seconds
when pressing button more than
once.If shorter than 5 seconds, it
skips over the code to avoid errors
from accidentally pressing button.

DFRobot

Components

Push Button
The push button we used has
4 pins. When you press
a button or flip a lever, they
connect two pins together
so that electricity can
flow through them. Actually,
there are only really two elec-
trical connections; inside the
switch package pins 1 and 4 are
connected together, as are 2
and 3. The little tactile
switches that are used in this
lesson have four connections.
You might have one with 2 pins,
but it works the same way.

A push button can switch on and
switch off the electricity flowing
through the circuit. In the project,
when it is pressed, D9 pin de-
tects HIGH (on), otherwise it re-
mains LOW (off).

1 2

 back

press the button

4 3

1 2

4 3

1 2

4 3

Fig 3-4 button diagram

Fig 3-2 Structure of push button (front
& back)

Fig 3-3 schematic diagram of push
button

0703. Interactive traffic lights

DFRobot

Pull-down resistors are used in
electronic logic circuits to ensure
that inputs to the arduino settle at
expected logic levels if external
devices are disconnected. A
pull-down resistor weakly "pulls"
the voltage of the wire it is
connected to to ground when the
other components on the line are
inactive.

When the switch on the line is

open, it has high impedance and acts

like it is disconnected. Since the

other components act as though

they are disconnected, the circuit

acts as though it is disconnected,

and the pull-up resistor brings the

wire up to the HIGH logic lev-

el. When another component on

the line goes active, it will override

the HIGH logic level set by the

pull-up resistor. The pull-up

resistor assures that the wire is at a

defined logic level even if no active

devices are connected to it.

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

0V0V
5V5V

input

GND

5V

with pull-down resistor

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN
5V

G
ND

1

input

5V

without pull-down
resistor

What is pull-down
resistor?

0803. Interactive traffic lights

DFRobot

1. of any color
and achieve the LED lights display.

2.
up the column of LEDs in the
middle and have them pass the
light towards either edge.

3 light the column from left to

Homework After Class

The LED is off

The LED is on

0903. Interactive traffic lights

 04

Breathing LED
Project 4

www.dfrobot.com

01DFRobot 04. Breathing LED

Breathing LED

In previous lessons, we learned how to turn a LED on and off by Arduino programming. It is also possible to

control the brightness of your LED as well. There are 6 digital pins marked with “~” on your controller. This

means that these pins can use a PWM signal. We will build a RGB LED fader by controlling PWM creating a

smooth brightening and dimmming of your LED as it gradually turns on and off.

Components

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x1Resistor 220Rx2M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

x15MM LED

02DFRobot 04. Breathing LED

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

+-

Circuit

The wiring diagram is the same as Project 1. If you are not clear about it,
go back to Project 1 and have a look.

Fig. 4-1 Breathing LED Diagram

03DFRobot 04. Breathing LED

Arduino Code

 Sample Code 4-1： You will see the LED getting brighter and
fading constantly after uploading the code.

// Project 4
int ledPin = 10;

void setup() {
 pinMode(ledPin,OUTPUT);
}

void loop(){
 fadeOn(1000,5);
 fadeOff(1000,5);
}

void fadeOn(unsigned int time,int increament){
for (byte value = 0 ; value < 255; value+=increament){

 analogWrite(ledPin, value);
 delay(time/(255/5));
 }
}

void fadeOff(unsigned int time,int decreament){
for (byte value = 255; value >0; value-=decreament){

 analogWrite(ledPin, value);
 delay(time/(255/5));
 }
}

04DFRobot 04. Breathing LED

In the main code, we only use 2
functions. You will have a clear
idea after checking one of them
as below.

This is a new command in the
for() function.

How can we send analog values
to a digital pin? We use pins
marked with a ～ on the end,
such as D3, D5, D6, D9, D10 and
D11, to output a variable amount
of power to the LED. These tech-
nique of controlling power is known
as Pulse Width Modulation , or
PWM for short.

void fadeOn(unsigned int time,int
increment){

 for (byte value = 0 ; value <
255; value+=increment){

 analogWrite(ledPin, value);
 delay(time/(255/5));
 }
}

Code

analogWrite(ledPin, value)

analogWrite(　pin,value　)

PWM pins

Value between 0 and 255

Most of the code we already very familiar with, such as initializes the variable declarations, pin set, the for loop,
as well as the function call.

The format of analogWrite
command is as below.：

The analogWrite() function is to
assign PWM pin an analog value
between 0 and 255. Beware that
analogWrite() can also used for
PWM pins.

The fadeOn() function has 2
parameters, “int time” for time
and “int increment” for the
increasing values. There is a for()
statemen that repeats the
program. The condition is
“value < 255” and the amount of
brightness increase is decided by
increment.

05DFRobot 04. Breathing LED

Roughly every 1/500 of a second, the PWM pins outputs a

pulse using digital signals. By controlling the length of on

and off, it creates an equivalent effect of carrying out

voltage between 0 volts and 5 volts. The length of pulse is

called “pulse width” so PWM refers to pulse

width modulation.

Let’s take a closer look at PWM.

The green line is the cycle of the pulse. The per-
centage of length of high voltage and low voltage
according to the value of analogWrite() function is
known as the “Duty Cycle”. The duty cycle of the first
pulse is 0. So the value is 0 and the brightness of LED
is 0, equivalent to off. The longer the signal is HIGH,
the brighter the LED is. The duty cycle of the last
pulse is 100%. So the value is 255 and the brightness
of LED is 255. Likewise, 50% is half brightness and 25
% is relatively dimmer.

PWM is widely used in controlling light brightness. We
also use it to control the rotating speed of motors,
such as wheels of vehicles powered by motors.

This chapter is over! Although we have used the same
hardware as in Project 1, Arduino is running a different
program, resulting in a completely different effect.

We think that the Arduino is amazing and we
hope by now you do too!

5v

0v

5v

0v

5v

0v

5v

0v

5v

0v

Pulse Width Modulation
0% Duty Cycle - analogWrite(0)

25% Duty Cycle - analogWrite(64)

50% Duty Cycle - analogWrite(127)

75% Duty Cycle - analogWrite(191)

100% Duty Cycle - analogWrite(255)

06DFRobot 04. Breathing LED

1. Create a flickering flame effect using LEDs by controlling the value of PWM at random. Cover it with
paper and it will become a little lamp at night.

Materials:
1 red LED
2
1 220

the “random()” suggest you to initialize a brightness level first
and let it change within a random value, such as random(120)+135. This way, the LED can change within a small
amount just like a real flame

2. Try a more challenging project: Control the LED with 2 buttons, one to make it brighter, the other to make it
dimmer.

Reference: http://www.geek-workshop.com/thread-1054-1-1.html

You can look up to the references below for more explanations of various commands.

Exercise

https://www.arduino.cc/en/Reference/HomePage

05

Colour RGB LED
Project 5

www.dfrobot.com

01DFRobot 05. Colourful RGB LED

Color RGB LED

Let’s start with a new component: an RBG LED. This component combines red, blue and green LEDs and can

display various colors by adjusting the different values of each light. A computer monitor uses many RBG LEDs to

display an image. We will learn how to create different colors with RGB LED randomly in the this lesson.

Components

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x3Resistor 220R x15mm RGB LEDx4M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

02DFRobot 05. Colourful RGB LED

Circuit

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig. 5-1 Colourful RGB LED Diagram

Before building the circuit, try to identify whether your RGB LED is
common cathode or common anode. If you don’t know how to do it, skip
to the last part of this lesson. In this project, we assume that you are
using a common cathode RBG LED.

03DFRobot 05. Colourful RGB LED

Arduino Code

Sample code 5-1:

You should see the RGB LED
blinking with random colors after
uploading this code.

//PROJECT 5 RGB LED
int redPin = 9;
int greenPin = 10;
int bluePin = 11;

void setup(){
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);

}

void loop(){
 //R:0-255 G:0-255 B:0-255
 colorRGB(random(0,255),random(0,255),random(0,255));
 delay(1000);

}

void colorRGB(int red, int green, int blue){
 analogWrite(redPin,constrain(red,0,255));
 analogWrite(greenPin,constrain(green,0,255));
 analogWrite(bluePin,constrain(blue,0,255));

}

04DFRobot 05. Colourful RGB LED

The constrain() function requires three parameters:
x, a and b.

x is a constraint number here, a is the minimum,
and b is the maximum.

If the value is less than a , it will return to a . If it is
greater than b , it will return to b .

The first variable of this function is the minimum value
and the second is the maximum. So we configure as
random(0,255) in this program.

First, we will configure the 3 LEDs contained within the RGB LED to 3 PWM pins so we can adjust them to
different colors by declaring 3 pins as an OUTPUT .
The main part of this program is to create a new command: colorRGB() which has 3 parameters to assign a
value to red, green and blue light between the values of 0 and 255.
This way, when we want to configure a color, we can simply assign values to this command instead of
repeating the analogWrite() command constantly.

Code

The format of the constrain function is as follows:

Here we will introduce constrain() and random() .
Do try to look them up with websites we mentioned in
the last homework first and see if you can under-
stand them.

Red, green and blue are our constrained parameters.
They are constrained between 0 and 255 (which falls
into the range of PWM values). Values are generated
at random using the random() function.

Maximum value

constrain(x，a，b)

Minimum value

Constrained parameter

The format of random() is as below:

Maximum value

random(min ，max)

Minimum value

05DFRobot 05. Colourful RGB LED

Components

The RGB LED has four leads. If you
are using a common cathode RGB
LED, there is one lead going to the
positive connection of each of the
single LEDs and a single lead that
is connected to all three negative
sides of the LEDs. That’s why it is
called common cathode. There is
no difference in appearance be-
tween common cathode and
common anode RGB LEDs,
however, you do need to pay
attention when assigning color
values. For example, for the
common cathode RGB
red is B-0 . For
the common anode RGB LED, red
is R-0, G-255, B-255 . How can
we adjust the RGB LED to
change to different colors?

By assigning different values
of brightness levels to 3
primary colors using the func-
tion analogWrite(value) , you
can configure any color you like!

RGB LED

Fig. 5-2 How 3 LEDs form A RGB LED (Common Cathode)

Fig. 5-3 Remixing red, green and
blue to achieve various colors

06DFRobot 05. Colourful RGB LED

You can configure 255x255x255
(16777216) kinds of colors by as-
signing different PWM values on
these 3 LEDs

The difference
between

common anode
 and common

cathode
RBG
LEDs

What is the difference between common anode and common cathode
RGB LEDs in application? According to the figure below, there is no dif-
ference between common anode and common cathode in terms of their
appearance. However, there are two key differences in their application:

(1) Different connections: for the common anode, the common port
should be connected to 5V but bot GND, otherwise the LED fails to be lit.

(2) Colour matching: the common anode RGB LED is totally different than
the common cathode RGB LED. The common anode RGB LED decodes in
the opposite way: “R-0, G-255 and B-255”.

Red Green Blue Colour

255

0

0

255

0

255

255

0

255

0

255

255

0

255

0

0

255

0

255

255

255

Red

Green

Blue

Yellow

Blueish Green

Purplish Red

White

Fig. 5-1 Colours generated from combined PWM values of different LEDs

Fig. 5-4 Common Cathode RGB Diagram Fig. 5-5 Common Anode RGB Diagram

07DFRobot 05. Colourful RGB LED

Exercise

1. Based colors by
playing with different values.

 fo selbairav egnahc ot deen ylno uoY :PPPIIITTT “colorRGB()”.

2. Take your rainbow se uence LED and make each color fade so that the transition between each color is
smoother.

08DFRobot 05. Colourful RGB LED

Download a library from the
internet and unzip it to the
libraries directory inside the

Arduino IDE directory on your
computer.

Beware that inside the folder will
be a .cpp file, a .h file and
often a keywords.txt file. Be sure
that these are within the same di-
rectory otherwise the Arduino IDE
will not recognize the library.

Then open the program in
the example. Check whether you
need to change the pins in the
program if necessary.

How to load libraries

Files of *.cpp and *.h must be placed in the
root directory but not the second-level

Unzip the archive files into Libraries of

06

Alarm
Project 6

www.dfrobot.com

01DFRobot 06. Alarm

 Alarm

Let’s try a new component: the buzzer! It generates sounds of different frequencies using sinusoidal

waves. If you connect a LED with the same sinusoidal wave, you can make your own alarm.

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x1Buzzerx2M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

Hardware Connections

02DFRobot 06. Alarm

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig. 6-1 Alarm Diagram

Make the following connections. Notice that the longer leg on the buzzer
is positive, and the shorter leg is negative. Connect the negative lead
to GND and the positive lead to Pin 8.

03DFRobot 06. Alarm

Code

Sample code 6-1:

Sample code 6-1 (from “Beginning Arduino”)

// Project 6 Alarm
float sinVal;
int toneVal;

void setup(){
 pinMode(8, OUTPUT);
}

void loop(){
 for(int x=0; x<180; x++){
 //convert angle of sinusoidal to radian measure
 sinVal = (sin(x*(3.1412/180)));
 //generate sound of different frequencies by sinusoidal value
 toneVal = 2000+(int(sinVal*1000));
 //Set a frequency for Pin-out 8
 tone(8, toneVal);
 delay(2);
 }
}

You can hear alarm of high and
low pitches after uploading the
code.

Code

04DFRobot 06. Alarm

First, define two variables:

toneVal = 2000+(int(sin-
Val*1000));

1. tone(pin,frequency)

2. tone(pin,frequency,
duration)

“float” is a datatype for floating
point numbers (a number that has
a decimal point).

Floating point numbers are often
used to approximate analog and
continuous values because they
have greater resolution than
integers. Here we use the
“float” variable to store sinu-
soidal values. The sinusoidal wave
changes quite evenly in a wave
shape, so we convert it to sound
frequencies. Hence, toneVal gets
values from sinVal and con-
verts it to frequencies.

We need to use the formula
“3.1412/180)” to convert it from an
angle to a radian value because
the unit “sin” is radian instead of
an angle.

Then we change this value to a
sound frequency of an alarm:

Here we introduce 3 functions
relevant to tone:

“pin” is the digital pin connected
to the buzzer. Frequency is the
frequency value in Hz.

The “duration” parameter is mea-
sured in milliseconds. If there is no
duration, the buzzer will keep mak-
ing sound of different frequencies.

3. noTone(pin)

The “noTone(pin)” function is to
end the sound from the specific
pin.

“sinVal” is a floating variable, a value
with decimal point. We don’t want
our frequency to have decimal
point, so we need to change the
floating value to an integer value
by writing the command as below:

Human ears can notice sound of
frequencies from 20Hz to 20kHz,
so we multiply the raw value by
1000 times plus 2000 to assign
the value for “toneVal” to give us
a range of 2000 to 3000.

float sinVal;
int toneVal;

for(int x=0; x<180; x++){}

int(sinVal*1000)

tone(8, toneVal);

sinVal=(sin(x*(3.1412/180)));

Components

05DFRobot 06. Alarm

A buzzer is an electronic component that can generate sound. There
are generally two types: piezo buzzers and magnetic buzzers.

The Buzzer

Piezo and magnetic buzzers are futher categorized in to two types: ac-
tive and passive buzzers. The basic difference lies in different demands
for their input signal. In this case, “active” and “passive” do not refer to
power sources, but oscillation sources.

In this kit, active magnetic buzzers are included.

A passive buzzer has no oscillator of its own, so it needs to use a
square wave from 2khz to 5khz to trigger it instead of simply using direct
current.
Passive buzzers are polarized, so they have to be connected the correct
way around: They have a long lead (anode) and short lead (cathode)
For a beginner, passive buzzers are easier to work with.

If you want to explore buzzers further, here are some project ideas:

Passive buzzers are good for various musical effects.
There are many applications based on buzzers. A lot of buzzer-based
gadgets are possible like infrared sensors and ultrasonic sensors for
monitoring and alerting approaching objects; temperature sen-
sors for excess temperature alarm; gas sensors for gas leakage alarms.
Besides alarms, buzzers can also be used as musical instruments using
different frequencies to form different notes.

Aren’t buzzers amazing?

The Difference between Active Buzzers and Passive Buzzers

An active buzzer has its own oscillation source - it buzzes as it is powered
on.
An active buzzer has a simple oscillator circuit that changes DC current
into a pulse signal of a certain frequency. Active buzzers contain a special
film called “molybdenum” the The magnetic field from the oscillation of
the buzzer. Once powered, it starts to make a sound.
Active buzzers are non-polarized meaning that you can connect them
any way around and they will work.

Exercise

06DFRobot 06. Alarm

1. Make an alarm with a red LED.

Set up our circuit so that the LED changes in in unison with the “sin” function so that the light
intensit changes with the sound.

2. Using what ou learned in Project 3, can ou make a door bell? When the button is pressed, the
buzzer should make a sound.

07

Temperature Alarm
Project 7

www.dfrobot.com

01DFRobot 07. Temperature Alarm

Temperature Alarm

We added a temperature sensor to the previous circuit to trigger the buzzer to make a sound when the

temperature reaches a certain range. This is our first project using an actuator responding to a sensor.

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x1Buzzer x1Tem. Sensorx5M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

Hardware

02DFRobot 07. Temperature Alarm

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig. 7-1 Temperature Alarm Diagram

Based on the circuit of project 6, connect temperate sensor LM35 as
below. The pins are connected to 5V, Analog pin 0 and GND.

03DFRobot 07. Temperature Alarm

Sample code 7-1:

//Project 7 Temperature Alarm
float sinVal;
int toneVal;
unsigned long tepTimer ;

void setup(){
 pinMode(8, OUTPUT); // configure pin of buzzer
 Serial.begin(9600); 　　 // configure baud rate to 9600 bps
}
void loop(){
 int val; 　　 //save the value of LM35
 double data; 　 // save the converted value of temperature
 val=analogRead(0); //Connect LM35 to analog pin and read
value from it
 data = (double) val * (5/10.24); //Convert the voltage value to
temperature value

 if(data>27){ //If temperature is higher than 27, the buzzer starts to
make sound.
 for(int x=0; x<180; x++){
 //Convert sin function to radian
 sinVal = (sin(x*(3.1412/180)));
 //Use sin function to generate frequency of sound
 toneVal = 2000+(int(sinVal*1000));
 //Configure the buzzer pin 8
 tone(8, toneVal);
 delay(2);
 }
 } else { // If the temperature is lower than
27, turn off the buzzer
 noTone(8); // Turn off the buzzer
 }
 if(millis() - tepTimer > 50 // Every 500 ms, serial port outputs
temperature value.
 tepTimer = millis();
 Serial.print("temperature: "); // Serial port outputs temperature
 Serial.print(data); 　　 // Serial port outputs temperature
value
 Serial.println("C"); 　　 // Serial port output temperature
unit
 }
}

04DFRobot 07. Temperature Alarm

After the code is successfully uploaded, open the serial monitor of Arduino IDE.

Read temperature value from the serial port. If you put your fingers on
the LM35 sensor, you will find the temperature rises immediately. Your
fingers are transferring heat to the sensor!

As per the program, once the temperature reaches 27 degrees C, the
buzzer starts to sound. If the temperature drops below 27 degrees C,
the buzzer stops.

05DFRobot 07. Temperature Alarm

Most of the above codes are the same as those in Project 6. Almost all of the syntax has been mentioned in
previous projects. Hopefully you have some understanding about the variables and functions by now.

Serial.begin(9600);

val=analogRead(0);

analogRead(pin)

data = (double) val *
(5/10.24);

The third variable “tepTimer” is an
unsigned long datatype to store
time and output temperature
values from serial port.
Why “unsigned long”?
Since the machine will run for a
relatively long time, we choose
a long integer and since it can-
not store negative numbers, it is
unsigned.
In the first line of the “setup()”
function, why do we only
configure the buzzer as output
mode and disregard the LM35
temperature sensor?
The LM35 uses analog values.
Analog values don’t need to
be configured for “pinmode”.
“pinMode” is only used for dig-
ital pins.

There are many functions for serial
port communication:

We initialize 3 variables at the top
of the program.

This is a new function, “analogRead
(pin)”.

This function reads a value from
the specified analog pin. The
digital pins in the Arduino are
connected to a 10 byte analog to
digital converter, so the voltage
between 0 and 5V is con-
verted to a value ranging
between 0 and 1023. Each value
corresponds to a value of voltage.
The voltage value of temperature
read here outputs a range
between 0 to 1023. Every 10mV
corresponds to 1 degree for
LM35 temperature sensor.

From the voltage value read via
the sensor, the range is from 0 to
1023. So we divide it into 1024
parts and multiply the result by 5
to convert it to voltage value.
Since 10mV corresponds to 1 de-
gree, we need to multiply that to
get a temperature value in
double datatype and assign it to
a data variable.

This function is to initialize the
baud rate (data transmit rate) of
the serial port. Normally the de-
fault setting in the serial monitor
works for most applications, but-
some wireless modules have a
specific baud rate requirement.

In the “loop()” function, we
declare 2 variables: “val” and
“data” at the top. These are
variables in a limited scope so
that they only run inside the indi-
vidual block of code.

float sinVal;
int toneVal;
unsigned long tepTimer ;

The Serial Port The serial port allows the Arduino to communicate with the external world
by transmitting and receiving data. There is at least one serial port in each
Arduino micro-controller, separately connected to digital pin 0 (RX/data
receive) and analog pin 1 (TX/data transmit). Digital pin 1 and 0 cannot be
used for I/O function when the serial port is in use. You download code to
the Arduino via the serial port. When downloading code, the USB will oc-
cupy digital pin RX and analog pin TX. The RX and TX pins can not receive
other signals during this, or there will be interference. The best way to use
these 2 pins is to insert components after downloading your code.

06DFRobot 07. Temperature Alarm

In the following program, we
evaluate the condition by using
the “if/else” statement.

If the temperature is higher than
27, The program runs the first part
of the program, following the if
statement to activate the buzzer.
If not, it runs the else statement
to stop the buzzer.
Apart from detecting temperature
change for our alarm, we also
need to display the temperature the
Arduino reads via the serial port.
We need to use the “millis()”
function again to send out da-
ta every 500ms. (See Project 3 for
more details if you are unsure.)
After the serial port has received
data, how can we display it on the
serial monitor?

Is data a character string?
Why does it output numbers?

The answer is because we de-
clared the variable in the program
setup function to assign a number
to it.

print() works to convert “val”
to a readable ASCII format
(standard text) output from the
serial port.

There are various formats for this
function:
1. numbers output as a num-
ber
e.g.: Serial.print(78); outputs “78”

2. floating datatype outputs as
floating number with maximum 2
digits after decimal point

e.g. Serial.print(1.23456); outputs
“1.23”

This function is known as a condi-
tional. It works as follows:
An expression is specified. If the
conditions of the expression are
true, statment 1 is executed and
statement 2 is skipped.
If the expression is false, statment
2 is executed and statment 1 is
skipped.
Either statement 1 or 2 is to be
executed but simultaneous exe-
cution is prevented. Put in simple
terms, this is the Arduino making
a decision between two pre
determined variables.

3. Add single quotation mark to
character and add double quota-
tion mark to character string.
e.g. Serial.print(‘N’); outputs “N”

Serial.print(“Hello world.”);
outputs “Hello world.”

The difference between “println()”
and “print()” is that “println()”
has a new line character.

Another common command is
“Serial.write()”. It does not output in
ASCII format but in a byte format.
Check the reference on Arduino.cc
if you are interested in finding out
more.

if (expression) {
 Statement 1;
} else{
 Statement 2;
}

Serial.print(data);

if(data>27){ for(int
x=0; x<180; x++){
 ……
 }
} else {

 …… }

Serial.print(val);
Serial.println(val);

The “if/else” statement format:

Component

07DFRobot 07. Temperature Alarm

he LM35 is a very common tem-
perature sensor which is accurate to

5
It has 3 pins:

Vs is power
Vout is voltage output
GND is ground.

he calculation formula is as follows:

If you want to learn more about this
component, you can consult the data
sheet. his gives extra detail on how
a method for converting temperature
data into voltage.

A useful resource for compo-
nent datasheets can be found
here:
http://www.alldatasheet.com/

LM35 temperature sensor

Diagram of LM35 pins

Formula of LM35

TWISTED PAIR

OUT
LM35

5V

+

-

+

-

FINS

200
1%

)C° 1+TNEIBMAT(C° /Vm 01=tuoV

FROM + 2°C TO +40° C200
1%

6.8k
5%

Components

Exercise

08DFRobot 07. Temperature Alarm

Add a LED to the project above. When the temperature is in a defined range, make the LED turn on
and make the buzzer sound.
You can assign different colored LEDs and different buzzer sounds for different temperature ranges

E.g.:
- When the temperature is lower than 10 or higher than 35, a red LED turns on and the buzzer
makes a rapidly-oscillating sound
- When the temperature falls between 25 and 35, a yellow LED turns on and buzzer makes a
smooth-osciallating sound
- When the temperature falls between 10 and 25, a green LED turns on and the buzzer is off.

Exercise

08

Vibration Sensor
Project 8

www.dfrobot.com

01DFRobot 08. Vibration Sensor

Vibration Sensor

In this project we are going to use the tilt sensor included in your kit. The tilt sensor can detect basic motion

and orientation. It contains two contacts and a small metal ball. Once held at a particular orientation, the ball

bridges the two contacts and completes the circuit. We have also added an LED to this project. When the

sensor detects movement, the LED lis HIGH (on). When no movement is detected the LED is LOW (off).

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x15MM LEDx5M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

x1Tilt Switch Sensorx2Resistor 220R

Circuit

02DFRobot 08. Vibration Sensor

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Diagram of the tilt sensor circuit

A tilt sensor behaves much like a push button. You need to add a pull-
down resistor to the sensor to ensure the circuit is disconnected when
no signal is detected.
You also need to add a current-limiting resistor to the LED.

Code

03DFRobot 08. Vibration Sensor

Sample code 8-1

EEExxx eeeppp ccc aaahhheeebbb dddeeettt vvv oooiii uuurrr:::
When we shake the board, the
LED is HIGH (on). When we stop
shaking, the LED is LOW (off).

//project 8 – Vibration sensor

int SensorLED = 13; //define LED digital pin 13
int SensorINPUT = 3; // connect tilt sensor to interrupt 1 in
digital pin 3
unsigned char state = 0;

void setup() {
 pinMode(SensorLED, OUTPUT); //configure LED as output mode
 pinMode(SensorINPUT, INPUT); //configure tilt sensor as input mode
//when low voltage changes to high voltage, it triggers interrupt 1 and runs
the blink function
 attachInterrupt(1, blink, RISING);
 }

void loop(){
 if(state!=0){ // if state is not 0
 state = 0; 　 // assign state value 0
 digitalWrite(SensorLED,HIGH); 　// turn on LED
 delay(500); 　// delay for 500ms
 }
 else{
 digitalWrite(SensorLED,LOW); // if not, turn off LED
 }
}

void blink(){ // interrupt function blink()
state++; //once trigger the interrupt, the state
keeps increment
}

04DFRobot 08. Vibration Sensor

Code

 ?nnnoooiiitttpppuuurrrrrreeetttnnniii sssiii tttaaahhhWWW

Imagine you are watching TV at

home and the phone rings. You

have to stop watching TV and

pick up the phone. After the call

has ended, you continue to watch

TV. In this case, the call is the rrreeetttnnniii ---

tttpppuuurrr and the ringing of the phone

 .nnnoooiiitttiiidddnnnoooccc eht si

- attachInterrupt(1, because the tilt

sensor is connected to digital pin 3.

- Blink is our interrupt function

- RISING , to trigger when the pin

goes from LOW to HIGH.

Why have we chosen RISING ?

When the tilt sensor does not de-

tect any signal, pin 3 is LOW. When

it detects a signal, it connects with 5

volts and this change the pin from

LOW to HIGH.

attachInterrupt (interrupt,
function ,mode)

attachInterrupt(1, blink,
RISING);The attachInterrupt function

specifies a named function, or an

Interrupt Service Routine (ISR), to

call upon when an interrupt

occurs. This replaces any previ-

ous function that was attached to

the interrupt. Most Arduino

boards have two external interrupts:

numbers 0 (on digital pin 2) and 1 (on

digital pin 3). Different boards

have different interrupt pins.

Check the references on arduino.cc

for details: http://arduino.cc/en/

Reference/AttachInterrupt

There are 3 parameters in
attachInterrupt

Now let’s go back to the program:

In this section we are going to examine the interrupt function that we used in the code. The program works as

follows: when there is no interruption to the program, the code keeps running and the LED stays LOW (off).

When there is an external event and the tilt sensor is activated, such as someone shaking the board, the pro-

gram runs the blink() function and state starts incrementing. When the if statement detects that the state

is no longer 0, it triggers the LED to be HIGH (on). At the same time, it resets state to 0 and waits for the next

interruption. If there is no interruption, the LED is LOW (off).

mode defines when the interrupt

should be triggered. Four contstants

are predefined as valid values:

LOW to trigger the interrupt

whenever the pin is low,

CHANGE to trigger the interrupt

whenever the pin changes value to

RISING to trigger when the pin

goes from LOW to HIGH,

FALLING for when the pin goes

from HIGH to LOW.

interrupt :

The number of the interrupt (int),
is either number 0 or 1. If it is 0,
you must connect the jumper wire
to digital pin 2. If it is 1, you must
connect the jumper wire to digital
pin 3.

function :

- The function is called upon
when the interrupt occurs

- The function has no parameters
and returns nothing.

- As delay() and millis() both
rely on interrupts, they will not
work while the function is run-
ning.

- The function cannot read val-
ues from the serial port. You
might lose data connected from
serial port.

Watching TV

Phone CallInterruption

Watching TV
TV

Interrupt
Function Name

 Interrupt
 Condition

Interrupt Number

mode :

05DFRobot 08. Vibration Sensor

Components

Fig. 8-2 Vibration Sensor Diagram

The tilt sensor goes by many dif-
ferent names: ball switch, bead
switch, noitarbiv switch, etc.
Though it has different names, it’s
working principles are same. In
simple terms, it is a switch made
up of a cylinder a small metal ball
inside. When the metal ball rolls
to either edge of the cylinder,
they touch one of the contact
pins and the circuit is complete.
Examine the diagram for further
detail.

Tilt Sensor

. Phosphor Copper Pinch Cock

a. Bronze Cover b. Bronze Bead c. Bronze Pipe

e. Heat-shrinkable Piped. PC set

f . Bronze Conductive Pin

gg
aa

bb

cc ee
dd

ff

g

09

Light Sensitive LED
Project 9

www.dfrobot.com

01DFRobot 09. Light Sensitive LED

Light Sensitive LED
Let’s introduce a new sensor component: the photo diode. In simple terms, when the sensor detects light, its

resistance changes. The stronger light in the surrounding environment, the lower the resistance value the pho-

to diode will read. By reading the photo diode’s resistance value, we can work out the ambient lighting in an

environment. The photo diode provided in the starter kit is a typical light sensor.

In this project, we will make an automatic light that can adjust itself according to the ambient lighting around it.

When it is dark, the photo diode detects the change and triggers the light, and vice versa.

Components

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x15MM LED x1Ambient Light
Sensorx5M/M

Jumper Cables

DFRduino UNO R3 Prototype Shield

Resistor 220R Resistor 10K

Circuit

02DFRobot 09. Light Sensitive LED

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Diagram of the photo diode circuit

Be aware that photo diodes are polarized, just like LEDs, so they will only work if connected the correct
way around.

The photo diode has to be connected with a 10k resistor rather than a 220Ω resistor.

Code

03DFRobot 09. Light Sensitive LED

Sample code 9-1：

After uploading the code, you can
shine a flashlight on the photodi-
ode to alter the light levels in the
environment. When it is dark, the
should light up. When it is bright,
the LED should turn off.

// Project 9– Light the lamp
int LED = 13; //define LED digital pin 13
int val = 0; //define the voltage value of photo diode in
digital pin 0
void setup(){
 pinMode(LED,OUTPUT); // Configure LED as output mode
 Serial.begin(9600); //Configure baud rate 9600
}

void loop(){
 val = analogRead(0); // Read voltage value ranging from 0 -1023
 Serial.println(val); // read voltage value from serial monitor
 if(val<1000){ // If lower than 1000, turn off LED
 digitalWrite(LED,LOW);
 }else{ // Otherwise turn on LED
 digitalWrite(LED,HIGH);
 }
 delay(10); // delay for 10ms
}

Code

04DFRobot 09. Light Sensitive LED

A very brief explanation of the program:

Similar to the LM35 temperature sensor, the photo diode reads an

analog signal so we don’t need to define “pinMode” in “serial.begin”.

We take the analog current data from the photodiode and compare it

to a value of 1024 to make it digital. You can change this value if you

like. Try playing with the serial monitor and seeing what outputs the

photodiode gives. Then use this number you get here as the compari-

son number to alter the sensitivity of the circuit.

Circuit

05DFRobot 09. Light Sensitive LED

Diagram of voltage divider

 Formula of voltage divider

A photo diode is a semiconductor device that converts light into current.

The current is generated when photons are absorbed in the photo

diode. The stronger the environment’s light, the lower the resistance

value the photodiode will output. The analog value ranging from 0 to

1023 corresponds to voltage value ranging from 0 to 5V.

The input voltage Vin(5V) is connected to 2 resistors. By measuring the

voltage of R2 as below, you can get the resistance value of photo diode.

In our project, R1 is the 10k resistor and R2 is the photo diode. The re-

sistance value of R2 in dark is so high that it almost reaches 5V. Once pho-

tons are absorbed, the value of R2 will decrease, and so will its voltage

value. For this project it is preferable to use a fixed resistor ranging from

1k to 10k, otherwise the voltage dividing ratio is not obvious. This is why

in this project we have used a 10k resistor for R1.

Photo Diode

R1

R2

Vin

Vout

Vout = x Vin
R2

R1+R2

10

How to Drive A Servo
Project 10

www.dfrobot.com

01DFRobot 10. How to Drive A Servo

How to Drive A Servo

Servos are ideal for embedded electronics applications because they can move to a specific position

accurately. Most servos can turn 180 degrees at maximum. Some even larger ones can turn to 360 degrees.

They can be used in mobile platforms for detection devices such as cameras and detectors of smart vehicles,

or in robotic joints.

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1

x3M/M
Jumper Cables

DFRduino UNO R3 x1Servo

Circuit

02DFRobot 10. How to Drive A Servo

Circuit diagram of a servo connected to an Arduino

The servo has three leads. The color of the leads varies between servos but the red
lead is always 5V and GND will either be black or brown. The other lead is the
signal lead and this is usually orange or yellow. This signal lead is connected to
digital pin 9.

DFRduino
UNO v3.0[R3]

DFROBOT

a
050

Code

03DFRobot 10. How to Drive A Servo

Sample Code 10-1

After uploading the sketch, you will
see servo sweeping back and forth
from 0 to 180 degrees.

//Project 10 Servo
#include <Servo.h> //declare to insert Servo.h library
Servo myservo; //create servo object to control a servo
int pos = 0; //variable pos to store position of servo
void setup() {
 myservo.attach(9); //attach the servo to digital pin 9.
}

void loop() {
 for(pos = 0; pos < 180; pos += 1){ //servo turns from 0 to 180 in steps
of 1 degree
 myservo.write(pos); //tell servo to go to position in variable 'pos'
 delay(15); //wts 15ms for the servo to reach the position
}
 for(pos = 180; pos>=1; pos-=1) { // servo turns from 180 to 0 in steps
of 1 degree
 myservo.write(pos); //tell servo to go to position in variable 'pos'
 delay(15); //waits 15ms for the servo to reach the position
 }
}

04DFRobot 10. How to Drive A Servo

The sketch starts from inserting
<Servo.h > library.

There is another command in the
setup() function.

In the main program, there are 2
for statements. The first one starts

from 0 then spins to 180 degrees
in 1 degree increments. The sec-
ond one starts from 180 degrees
and goes back to 0 in 1 degree
increments.

Just like the previous command,
you have to declare a name for
this command. The parameters of
this function is an angle. The unit
is degrees.

If you want to know more about
the functions in the servo library,
visit the arduino website:

http://ardui-no.cc/en/reference/
servo

or visit the DFRobot website:

www.dfrobot.com attach(pin) assigns the pin. We
can use any digital pin, except 0
and 1. In this project, we have cho-
sen digital pin 9.

Declaring functions in the servo library

is a bit different from declaring other

functions. We need to declare various

functions in the library including

declaring the servo object and defin-

ing the function. Just like in the library,

you need to point out the object so

that the program can identify it. The

format of library function is as

below.

myservo is the servo object we named

before. So the function we invoke is:

This library is already in Arduino
IDE. Identify it by opening
Arduino-1.0.5/ libraries/ Servo/
Servo.h.

Libraries are collections of new
commands that have been
packaged together to make it
easy to include them in your
sketches. Arduino comes with a
handful of of useful libraries, such
as the servo library used in this
example that can be used to
interface to more advanced
devices.

We need to create a name in the
code for the servo:

#include <Servo.h> myservo.attach(9);

myservo.write(pos);

attach(pin)；

Servo myservo; // create
servo object to control
a servo

digital pins

Code

Don't miss the dot sign(".") in between

the word "my servo" and "attach" .

11

Controllable Servo
Project 11

www.dfrobot.com

01DFRobot 11. Controllable Servo

Controllable Servo

We’ve learned to turn the servo to a specific an gleusing an external signal. In the new project, we will use a poten-

tiometer to control a servo. You can also modify this circuit by swapping the potentiometer for a sensor such as

a tilt switch, or changing the actuator to an LED. Get tinkering and use your imagination!

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x3M/M
Jumper Cables x3F/M

Jumper Cables

DFRduino UNO R3 Prototype Shield

x1Servo
10K
Potentiometer

Circuit

02DFRobot 11. Controllable Servo

Fig. 11-1 Controllable Servo Circuit Diagram

This is a little different from our previous project as we are using a potentiometer. Potentiometers are sometimes
called variable resistors, and they are just that. By turning the knob, you are altering the electrical resistance of
the component. It has 3 pins: two side by side and one on top. Connect the side by side pins to 5V and GND on
the Arduino respectively, and the single pin on the opposite side of the potentiometer to the analog 0 pin on the
Arduino.

Code

03DFRobot 11. Controllable Servo

Sample code 11-1

After uploading the sketch, you can
see the servo turn according to the
position of the potentiometer.

//Project eleven controllable servo

#include <Servo.h> // insert the Servo.h library
Servo myservo; // create servo object to control servo

int potpin = 0; // connect potentiometer to digital pin0
 ;lav tni // variable value to read value from analog pin

void setup() {
 myservo.attach(9); //Attach the servo on pin 9 to the servo object.
}

void loop() {
 val = analogRead(potpin); //eads the value of the potentiommeter
(value between 0 and 1023)
 val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo (value
between 0 and 180)
 myservo.write(val); // sets the servo position according to the
scaled value
 delay(15); // wait for 15 ms to turn to certain position

}

Code

04DFRobot 11. Controllable Servo

We declare to insert the <Servo.h> library first and
then define the potentiometer on Analog pin 0 to
read its value.

Now let’s dig into the “map” function.
The format of map function is as below:

Note that the "lower bounds" of either range may be
larger or smaller than the "upper bounds" so the “map()”
function may be used to reverse a range of numbers,
e.g.:

Back to our sketch: we map the analog value from 0
to 1023 to a servo value from 0 to 180.

The function also handles negative numbers well, so
that this example is also valid and works well:

The “map” function re-maps a number from one
range to another. That is, a value of “fromLow”
would get mapped to “toLow”, a value of “fromHigh”
to “toHigh”, values in-between to values in-between,
etc.

Parameters
value: the number to map
fromLow: the lower bound of the value's current range
fromHigh: the upper bound of the value's current
range
toLow: the lower bound of the value's target range
toHigh: the upper bound of the value's target range

map(value, fromLow, fromHigh,
toLow, toHigh)

y = map(x, 1, 50, 50, 1);

y = map(x, 1, 50, 50, -100);
val = map(val, 0, 1023, 0, 179);

Circuit

05DFRobot 11. Controllable Servo

A potentiometer is a simple knob that provides a variable resistance
which Arduino can read as an analog value

In this proje we connected three wires to the Arduino. The first went
to ground from one of the outer pins of the potentiometer. The second
went from 5 volts to the other outer pin of the potentiometer. The
third went from analog input 2 to the middle pin of the potentiometer.

A potentiometer works in a similar way to the voltage divider in project 9.
The potentiometer is divided in to 2 resistors by the shaft. By turning
the shaft of the potentiometer, we change the amount of resistnce on ei-
ther side of the wiper which is connected to the center pin of
the potentiometer. This changes the relative "closeness" of that pin to 5
volts and ground, giving us a different analog input. When the shaft is
turned all the way in one direction, there are 0 volts going to the pin, and
we read 0. When the shaft is turned all the way in the other direction to
the upper limit, there are 5 volts going to the pin, and we read 1023. In
between, “analogRead()” returns a number between 0 and 1023 that is
proportional to the amount of voltage being applied to the pin.

Potentiometer

R1

R2

Vin

Vout

R1

R2

Vin

Vout

3

1 2

12

Interactive Adjustable
RGB LED

Project 12

www.dfrobot.com

01DFRobot 12. Interactive Adjustable RGB LED

Interactive Adjustable RGB LED

In Project 5, we learned about how to adjust an RBG LED to various colors. This time we will try to make it

interactive by adding 3 potentiomters so that you can choose any color you want for your lighting at home.

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x13M/M
Jumper Cables

x3

DFRduino UNO R3 Prototype Shield

x15mm RGB LED
10K
Potentiometer

x3Resistor 220R

Circuit

02DFRobot 12. Interactive Adjustable RGB LED

Fig. 12-1 Interactive Adjustable RGB LED Circuit diagram

Code

03DFRobot 12. Interactive Adjustable RGB LED

After uploading the sketch, you can
change different combinations of red,
green and blue colors on the RGB
LED.

//Sample Code 12-1:
int redPin = 9; // R – digital 9
int greenPin = 10; // G – digital 10
int bluePin = 11; // B – digital 11
int potRedPin = 0; // potentiometer 1 – analog 0
int potGreenPin = 1; // potentiometer 2 – analog 1
int potBluePin = 2; // potentiometer 3 – analog 2

void setup(){
 pinMode(redPin,OUTPUT);
 pinMode(greenPin,OUTPUT);
 pinMode(bluePin,OUTPUT);
 Serial.begin(9600); // Initialize the serial port
}
void loop(){
 int potRed = analogRead(potRedPin); 　 // read value from potentiometer of
red LED
 int potGreen = analogRead(potGreenPin); // read value from potentiometer of
green LED
 int potBlue = analogRead(potBluePin); 　 // read value from potentiometer of
blue LED
 int val1 = map(potRed,0,1023,0,255); 　//map the voltage value ranging from
0~ 1023 to analog value ranging from 0 ~255
 int val2 = map(potGreen,0,1023,0,255);
 int val3 = map(potBlue,0,1023,0,255);

 // print value of red, green and blues LEDs from serial port
 Serial.print("Red:");
 Serial.print(val1);
 Serial.print("Green:");
 Serial.print(val2);
 Serial.print("Blue:");
 Serial.println(val3);
 colorRGB(val1,val2,val3); // configure the analog value for RGB LED
}
}

//define the colorRGB function
void colorRGB(int red, int green, int blue){
 analogWrite(redPin,constrain(red,0,255));
 analogWrite(greenPin,constrain(green,0,255));
 analogWrite(bluePin,constrain(blue,0,255));
}

13

DIY Fan
Project 13

www.dfrobot.com

01DFRobot 13. DIY A Fan

DIY Fan

In this project, we will use a relay and a motor to make a small fan. A relay is an electrically operated switch that

allows you to turn on or off a circuit using voltage and/or current much higher than the Arduino can handle.

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x1
x2

5MM LED x1Pushbuttonx9M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

x1Relay x1130 Motor

x1Fan

Resistor 220R

Wiring

02DFRobot 13. DIY A Fan

Fig. 13-1 DIY Fan Circuit Diagram

Connect the button with a 220Ω pull-down resistor in order to hold the logic signal near zero volts when the
button is disconnected. The relay has 6 pins. Pin 1 and 2 on the relay are input signals and are separately con-
nected to digital pin 3 and GND on the Arduino. Pins 3, 4, 5, and 6 on the relay are the output signals but we
will only use pin 4 and pin 6 at this time. A relay is similar to a push button, which has 2 connections as well.

Code

03DFRobot 13. DIY A Fan

 Sample Code 13-1:

After uploading the sketch, you
can control the relay and LED with
the button.

//Project thirteen - the Arduino to control fan operation
int buttonPin = 2; 　// int buttonPin = 2；
int relayPin = 3; 　 // int relayPin = 3;
int relayState = HIGH; 　// int relayState = HIGH;
int buttonState; 　　 // record the current button state
int lastButtonState = LOW; 　　 // record the last button state
long lastDebounceTime = 0;
long debounceDelay = 50; // eliminate debounce time

void setup() {
 pinMode(buttonPin, INPUT);
 pinMode(relayPin, OUTPUT);

digitalWrite(relayPin, relayState); // configure the initial state of relay
}

void loop() {
 int reading = digitalRead(buttonPin); //read the value of button

 // once detects change of state, record time
 if (reading != lastButtonState) {
 lastDebounceTime = millis();
 }

// wait for 50ms to evaluate if it is the same state as last state
// if different, change the button state
// if the state of button is high(pressed), change the state of relay
 if ((millis() - lastDebounceTime) > debounceDelay) {
 if (reading != buttonState) {
 buttonState = reading;

 if (buttonState == HIGH) {
 relayState = !relayState;
 }
 }
 }
 digitalWrite(relayPin, relayState);

 //change the last state of button
 lastButtonState = reading;
}

Code

04DFRobot 13. DIY A Fan

The debounce of push button is the

When signals are received by the Arduino, the program does not oper-
ate on them immediately - it tests if the signal is correct and waits for
a certain time to confirm . If the signal is correct, the program will be
operating accordingly.
The reason the program tests for a correct signal is because there is a
bouncing process for the button when pressed. It might generate the
wrong signal, so we test it to solve the problem in hardware.

 if (reading != lastButtonState) {
 lastDebounceTime = millis();
 }
 if ((millis() - lastDebounceTime) > debounceDelay) {
 if (reading != buttonState) {
 ……
 }
 }

Hardware

05DFRobot 13. DIY A Fan

A relay is an electrically operated switch that allows you to turn on or off a
circuit using voltage and/or current much higher than the Arduino can
normally handle. There is no connection between the low voltage circuit
operated by Arduino and the high power circuit - the relay isolates the
circuits from each other.
Let’s take a look at the inner structure of relay:

Relays have 6 pins. Pins 1 and 2 are connected to the digital pin and
GND. We use these 2 pins to power the relay. There is a coil between
Pin 1 and Pin 2. When the circuit is HIGH, current flows in the coil, gen-
erates a magnetic field, closes the switch contacts and connects the
NO (Normally Open) to COM(common）pin. When the circuit is LOW,
no current runs in the coil, therefore the NC (Normally Closed)
connects to the common pin. We connect Pin 4 and Pin 6 to control the
switching on and off of the relay and the the LED.

Relay

DC (Direct Current) motors are devices that change electrical energy to kinetic energy. When
you supply power to a DC motor it will start spinning continuously until that power is removed.
When you switch the polarities, it will spin in the opposite direction. A motor runs continuously at
a high RPM (revolutions per minute). These revolutions of the motor shaft can not be controlled to
a specific angle, but you can control the speed. Because the rotations are so fast, it is impractical
to use it for vehicles.

A stepper motor has a gearing set on the DC motor to step down the speed and increase torque.
This makes it more practical to use for vehicle applications. Its speed can be controlled by PWM.

A servo is also a motor. It controls the position of the motor by a feedback system, as we saw in
the servo projects covered. Servos are practical to use for robotics arms.

The difference between the DC motor, Stepper Motors and Servos

（ NC ） （ COM ）

（ NO ） （ COM ）

14

IR Remote Controlled LED
Project 14

www.dfrobot.com

01DFRobot 14. IR Remote Controlled LED

Project

IR Remote Controlled LED

An infrared receiver, or IR receiver, is hardware device that sends information from an infrared remote control to

another device by receiving and decoding signals. In general, the receiver outputs a code to uniquely identify the

infrared signal that it receives. This code is then used in order to convert signals from the remote control into a

format that can be understood by the other device. Because infrared is light, it requires line-of-sight visibility for

the best possible operation, but can however still be reflected by items such as glass and walls. Poorly placed

IR receivers can result in what is called "tunnel vision", where the operational range of a remote control is

reduced because they are set so far back into the chassis of a device.

Components

Warm-up Experiment:

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x1IR Receiverx3M/M
Jumper Cables

DFR dleihS epytotorP3R ONU oniud

VOL +
FUNC/STOP

EQ
ST/REPT

0

1

2
3

4
5

6
7

8
9

VOL -

x1IR Remote
controller

Wiring

02DFRobot 14. IR Remote Controlled LED

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig. 14-1 IR Receiver Diagram

Note that the “V-out” lead of the infrared receiver must be connected
to Digital Pin 11 on the Arduino.

Vout GND 5V

Wiring

02DFRobot 14. IR Remote Controlled LED

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig. 14-1 IR Receiver Diagram

Note that the “V-out” lead of the infrared receiver must be connected
to Digital Pin 11 on the Arduino.

Vout GND 5V

Code

03DFRobot 14. IR Remote Controlled LED

Sample code 14-1:

This sketch is from “IRrecvDemo” in the examples of the “IRremote” library.

//project fourteen – infrared receiving tube
#include <IRremote.h> // insert IRremote.h library
int RECV_PIN = 11; //define the pin of RECV_PIN 11
IRrecv irrecv(RECV_PIN); //define RECV_PIN as infrared receiver
decode_results results; //define variable results to save the result of infrared
receiver

void setup(){
 Serial.begin(9600); // configure the baud rate 9600
 irrecv.enableIRIn(); //Boot infrared decoding
}

void loop() {
 //test if receive decoding data and save it to variable results
 if (irrecv.decode(&results)) {
 // print data received in a hexadecimal
 Serial.println(results.value, HEX);
 irrecv.resume(); //wait for the next signal
 }
}

We need to invoke the “IRremote” library first. Unzip the RAR and save it to the file Arduino libraries directory.
Run “IRrecvDemo” in the example.
If you don’t know how to invoke a library in the Arduino IDE, refer back to the exercise in Project 5.

04DFRobot 14. IR Remote Controlled LED

After uploading the code, open the serial monitor of the Arduino IDE and
configure the baud rate 9600 in line with Serial.begin(9600).

After configuration, press the button on the remote controller
towards the infrared receiver. Each button has a hexadecimal code. We
can see the code on serial monitor no matter which button we press. For
example, we press button “0”, the hexadecimal code received is FD30CF.

If it is received properly in the serial port, the code should be six digits
starting with FD. If the controller does not send out the signal towards the
infrared receiver, it might receive wrong code as we can see below.

The original infrared decoding is too complicated to manipulate,
which is why we use the library that is built by others without completely
understanding it. Since we have got the idea of decoding for infrared
signal, let’s make an infrared controlled LED.

If you keep pressing one button, the serial monitor reads “FFFFFFFF”.

05DFRobot 14. IR Remote Controlled LED

Remote Control LED

Component

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x1IR Receiverx3M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

VOL +
FUNC/STOP

EQ
ST/REPT

0

1

2
3

4
5

6
7

8
9

VOL -

x1
IR Remote
controller

x15MM LED Resistor 220R

Wiring

06DFRobot 14. IR Remote Controlled LED

Fig. 14-2 IR Remote Controlled LED Circuit Diagram

Based on the previous circuit, add an LED and a resistor. Connect the LED to digital
pin 10 and the signal LED of infrared receiver to digital pin 11.

Vout GND 5V

Code

07DFRobot 14. IR Remote Controlled LED

Sample Code 14-2:

#include <IRremote.h>
int RECV_PIN = 11;
int ledPin = 10; // LED – digital 10
boolean ledState = LOW; // ledState to store the state of LED
IRrecv irrecv(RECV_PIN);
decode_results results;

void setup(){
 Serial.begin(9600);
 irrecv.enableIRIn();
 pinMode(ledPin,OUTPUT); // define LED as output signal
}

void loop() {
 if (irrecv.decode(&results)) {
 Serial.println(results.value, HEX);

 //once receive code from power button, the state of LED is changed from HIGH
to LOW or from LOW to HIGH.
 if(results.value == 0xFD00FF){
 ledState = !ledState; //reverse
 digitalWrite(ledPin,ledState); //change the state of LED
 }
 irrecv.resume();
 }
}

Code

08DFRobot 14. IR Remote Controlled LED

Defining the infrared receiver is the same as the last sketch.

In the setup() function, we use serial port to boot the infrared decoding and
configure pinMode of digital pins. In the main program,

we test if receive infrared signal and store data in the results variable.

Once the Arduino receives data, the program does two things: first it
tests whether infrared code is received from the power button.

You might not be so familiar with “!”. “!” is a logical NOT.

“!ledState” is the opposite state of “ledState”. “!” is only used in the variable that
only holds 2 states, or boolean type of variable.

Next, the Arduino will wait for the next signal.

The second thing is to make the LED change state.

#include <IRremote.h> //insert IRremote.h library
int RECV_PIN = 11; //define the pin of
RECV_PIN 11
IRrecv irrecv(RECV_PIN); //define RECV_PIN as infrared
receiver

 ;stluser stluser_edoced //define variable results to
save the result of infrared receiver
int ledPin = 10; //LED – digital 10
boolean ledState = LOW; //Ledstate used to store the
LED status

ledState = !ledState; //Flip
digitalWrite(ledPin,ledState); //Change corresponding LED status

if (irrecv.decode(&results))

if(results.value == 0xFD00FF)

irrecv.resume();

Exercise

09DFRobot 14. IR Remote Controlled LED

1. Combine the fan project with the current project. Add one more
function to the mini controller to control a LED and a fan.

2. Make a DIY a remote controlled project, e.g.: a small figure that can
move with servos controlled by infrared signals.

15

IR Remote Controlled LED
Module

Project 15

www.dfrobot.com

01DFRobot 15. IR Remote Controlled LED Module

IR Remote Controlled LED Module

An 8-segment LED is a formed of electronic display device for displaying decimal numerals. It is an alternative

to more complex dot matrix displays. By controlling each LED in each segment connected to a digital pin,

numbers can be displayed on this LED.

Components

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x8Resistor 220R x18-Segment LEDx10Jumper Cables
M/M

DFRduino UNO R3 Prototype Shield

Wiring

02DFRobot 15. IR Remote Controlled LED Module

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig. 15-1 LED Module Display CIrcuit Diagram

The 8 segment LED has 10 pins. The 5 pins on the upper position are connected to digital
pin 2 to digital pin 5. The other 5 pins on the lower position with decimal point are
connected to digital pin 6 to 9. 8 resistors are included to limit the current for the LEDs.

Code

03DFRobot 15. IR Remote Controlled LED Module

Sample Code 15-1:

//Project 15 - digital tube display
void setup(){
for(int pin = 2 ; pin <= 9 ; pin++){ // define digital pin 2-9 as output
 pinMode(pin, OUTPUT);
 digitalWrite(pin, HIGH);
 }
}

void loop() {
 // display number 0
 int n0[8]={0,0,0,1,0,0,0,1};
 //display the array of n0[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n0[pin-2]);
 }
 delay(500);

 // display number1
 int n1[8]={0,1,1,1,1,1,0,1};
 // display the array of n1[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n1[pin-2]);
 }
 delay(500);

 // display number 2
 int n2[8]={0,0,1,0,0,0,1,1};
 // display the array of n2[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n2[pin-2]);
 }
delay(500);

 // display number 3
 int n3[8]={0,0,1,0,1,0,0,1};
 // display the array of n3[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n3[pin-2]);
 }
 delay(500);

 // display number 4
 int n4[8]={0,1,0,0,1,1,0,1};
 // display the array of n4[8] in digital pin 2-9

After uploading the sketch, the LED
will display 0 to 9 repeatedly. To
understand the code, you need to
know the structure of 8-segment
LED.

04DFRobot 15. IR Remote Controlled LED Module

 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n4[pin-2]);
 }
 delay(500);

 // display number 5
 int n5[8]={1,0,0,0,1,0,0,1};
 // display the array of n5[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n5[pin-2]);
 }
 delay(500);

 // display number 6
 int n6[8]={1,0,0,0,0,0,0,1};
 //display the array of n6[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n6[pin-2]);
 }
 delay(500);

 // display number 7
 int n7[8]={0,0,1,1,1,1,0,1};
 // display the array of n7[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n7[pin-2]);
 }
 delay(500);

 // display number 8
 int n8[8]={0,0,0,0,0,0,0,1};
 // display the array of n8[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n8[pin-2]);
 }
 delay(500);

 // display number 9
 int n9[8]={0,0,0,0,1,1,0,1};
 // display the array of n9[8] in digital pin 2-9
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin,n9[pin-2]);
 }
 delay(500);
}

Circuit

05DFRobot 15. IR Remote Controlled LED Module

The 8-segment display has 10 pins: a, b, c, d, e, f, g and DP segments
(decimal point). Each are connected to digital pins. By controlling each
LED on the segment connected, numbers can be displayed on this LED.
The other pin is a common pin that connected to GND(common
cathode) or 5V (common anode).

8-segment LED

Common
Cathode and

Common Anode
Differences

All of the cathodes (negative terminals) or all of the anodes (positive
terminals) of the segment LEDs are connected and brought out to a
common pin; this is referred to as a "common cathode" or "common
anode" device. The common pin of cathodes LEDs is connected to GND.
When you configure this pin HIGH, it triggers the LED to be on. The
common pin of anode LEDs is connected to 5V. When you configure this
pin LOW, it triggers the LED to be off.

Fig. 15-2 Pin-out Instructions

Code

DFRobot 15. IR Remote Controlled LED Module

with loops to
simplify things. Segment b a f g e d c -

a for loop.

for loop

-
ray with value 0/LOW. So the b segment is on. When

the a segment is on.
the f segment is

 etc.

’

pin= 2 n0 [0] b segment on

pin= 3 n0 [1] e a segment on

pin= n0[2] =0 f segment on

pin= 5 0[3] =1 digitalWrite(5 1) g segment off

pin= n0[] e 0) e segment on

pin= n0[5] d segment on

pin= 8 n0 0 c segment on

pin= n0] =1 e 1)

Now it displays 0.
-

tus is clear.

. ll be introduced on
the following page.

 and initialize
.

number
Let us take a look at the code of displaying 0.

the concept of an
is a collection of variables that are accessed with an

int
name it n0
that arrays are zero s. When declaring an
array of one more element than your initializa-

is
brackets (n0) elements.

for(int
 pinMode);
 digitalWrite);
}

for(int
 digitalWrite
}

int

Code 2

07DFRobot 15. IR Remote Controlled LED Module

In this section, we will introduce an even simpler way to manipulate the loops for number 0 to 9 in the 8-
segment LED. In the sketch above, we created 10 arrays to display 0 to 9. This is a one-dimensional array. What
about creating a two-dimensional array to make it simpler?

 Sample code 15-2:

//Item 11 - digital tube digital display
int number[10][8] =
{
 {0,0,0,1,0,0,0,1}, //display 0
 {0,1,1,1,1,1,0,1}, //display 1
 {0,0,1,0,0,0,1,1}, //display 2
 {0,0,1,0,1,0,0,1}, //display 3
 {0,1,0,0,1,1,0,1}, //display 4
 {1,0,0,0,1,0,0,1}, //display 5
 {1,0,0,0,0,0,0,1}, //display 6
 {0,0,1,1,1,1,0,1}, //display 7
 {0,0,0,0,0,0,0,1}, //display 8
 {0,0,0,0,1,1,0,1} //display 9
};
void numberShow(int i){ //call this function to display numbers
 for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin, number[i][pin - 2]);
 }
}
void setup(){

for(int pin = 2 ; pin <= 9 ; pin++){ // define digital pins 2 to 9 as output
 pinMode(pin, OUTPUT);
 digitalWrite(pin, HIGH);
 }
}

void loop() {
 for(int j = 0; j <= 9 ; j++){

 numberShow(j); // call numberShow() function to
display 0-9.
 delay(500);
 }
}

Code 2

08DFRobot 15. IR Remote Controlled LED Module

al array is composed with elements
al array is composed

al arrays.

al the
character null .

eighth element in the tenth array whose value is 1.

for loops manipulate
the variable is as
signed with a value, the function runs
accordingly.

The

is . As it skips to the

the

so the LED of segment b is G . Afterwards, the
 un

whole for loop is finished and

will manipulate
dimensional arrays together to form

dimensional array.

int

void numberShow(int

 for(int
 digitalWrite
}

void loop
 for(int

 delay
 }
}

number[0][0]

al arrayelemental array

09DFRobot 15. IR Remote Controlled LED Module

Compare how we displayed 0 in the first sketch.

The principle of assigning value for pin 2 to 9 to control segment from b
to DP is the same.

When numberShow(0) loop is finished, it goes back to the for loop
function.

1 → numberShow(1) → i =1 → number[1][pin-2] → display 1

j=2 → numberShow(2) → i=2 → number[2][pin-2] → display 2

j=3 → numberShow(3) → i=3 → number[3][pin-2] → display 3

……

j=3 → numberShow(9) → i=9 → number[9][pin-2] → displays 9

The above is the analysis for the codes. Just think about the differences
between the one dimensional array and the two dimensional array and
how the codes operate.

The combined application of the LED module and IR receiver is to
be achieved after handling their operating principles. The Arduino com-
patible controller processes and delivers the signal transferred from
the Mini remote controller to the IR receiver to the LED module.

Numbers from 0 to 9 on the mini remote controller are to be displayed on
corresponding positions on the LED module. In addition, decreasing and
increasing functions are feasible.

// display number 0
int n0[8]={0,0,0,1,0,0,0,1};
// display the array of n0[8] in digital pin 2-9
for(int pin = 2; pin <= 9 ; pin++){

 digitalWrite(pin,n0[pin-2]);
 }

Components

10DFRobot 15. IR Remote Controlled LED Module

x18-Segment LED

Components

DFRduino
UNO v3.0[R3]

DFROBOT

a
050 x1 x1

x8Resistor 220Rx13M/M
Jumper Cables

DFRduino UNO R3 Prototype Shield

x1IR Receiver

VOL +
FUNC/STOP

EQ
ST/REPT

0

1

2
3

4
5

6
7

8
9

VOL -

x1IR Remote
controller

Wiring

11DFRobot 15. IR Remote Controlled LED Module

1
7 6 5 4 3 2 1 0Aref Gnd 13 12 11 10 9 8

2323 3 1

1414

2

0 1 2 3 4 5RST 3V 5V GND VIN

5V
G
ND

1

Fig. 15-3 IR Remote Controlled LED Module Diagram

I , we are going to simply combine the hardware connections
are few changes. If there are any problems with the LED

module connections, go back and review .

Code

12DFRobot 15. IR Remote Controlled LED Module

Sample code 13-1
Project 13 - IR Remote Controlled LED Module
#include <IRremote.h> //Call IRremote.h Library.
int RECV_PIN = 11; //Dim RECV_PIN as 11
IRrecv irrecv(RECV_PIN); //Set RECV_PIN (Pin-out 11) as the IR receiver port.
decode_results results; //Set results as the IR records storage position.
int currentNumber = 0; //The variable is for current number storage.

long codes[12]= //The array is for IR codes storage delivered by
the IR remote controller.
{
 0xFD30CF,0xFD08F7, // 0 ,1
 0xFD8877,0xFD48B7, // 2 ,3
 0xFD28D7,0xFDA857, // 4 ,5
 0xFD6897,0xFD18E7, // 6 ,7
 0xFD9867,0xFD58A7, // 8 ,9
 0xFD20DF,0xFD609F, // + ,-
};

int number[10][8] = //The array is for numbers storage displayed on
the LED module.
{
 {0,0,0,1,0,0,0,1},//0
 {0,1,1,1,1,1,0,1},//1
 {0,0,1,0,0,0,1,1},//2
 {0,0,1,0,1,0,0,1},//3
 {0,1,0,0,1,1,0,1},//4
 {1,0,0,0,1,0,0,1},//5
 {1,0,0,0,0,0,0,1},//6
 {0,0,1,1,1,1,0,1},//7
 {0,0,0,0,0,0,0,1},//8
 {0,0,0,0,1,1,0,1},//9
};

void numberShow(int i) { //The function works to display numbers on the
LED module.
for(int pin = 2; pin <= 9 ; pin++){
 digitalWrite(pin, number[i][pin - 2]);
 }
}
void setup(){
 Serial.begin(9600); //Set the baud rate as 9600.
 irrecv.enableIRIn(); //Launch IR decoding.

for(int pin = 2 ; pin <= 9 ; pin++){ //Set Pin-out 2 to 9 as output mode.
 pinMode(pin, OUTPUT);
 digitalWrite(pin, HIGH);
 }
}

13DFRobot 15. IR Remote Controlled LED Module

Codes downloaded, have a try to
press some press buttons as
shown in Fig. 15-4 to check the
status of the LED module.

VOL +
FUNC/STOP

EQ
ST/REPT

0

1

2
3

4
5

6
7

8
9

VOL -

void loop() {
 //Evaluate whether decoding data are received and store the data in
variable results.
 if (irrecv.decode(&results)) {
 for(int i = 0; i <= 11; i++){
 //Evaluate whether IR codes are received of press button 0 to 9.
 if(results.value == codes[i]&& i <= 9){
 numberShow(i); //Display 0 to 9 on
corresponding position of the LED module.
 currentNumber = i; //Assign value displayed to
variable currentNumber.
 Serial.println(i);
 break;
 }

 // /Evaluate whether decreasing IR codes are received and the
current value is not 0.
 else if(results.value == codes[10]&& currentNumber != 0){
 currentNumber--; //Decrease current value.
 numberShow(currentNumber); //The LED module displays
decreasing value.
 Serial.println(currentNumber); //The serial port outputs
decreasing value.
 break;
 }

 //Evaluate whether decreasing IR codes are received and current
value is not 9.
 else if(results.value == codes[11]&& currentNumber != 9){
 currentNumber++; //Current value increases.
 numberShow(currentNumber); //The LED module displays
increasing value.
 Serial.println(currentNumber); //The serial port outputs
increasing value.
 break;
 }
 }

 Serial.println(results.value, HEX); //View IR codes via serial port
monitor.
 irrecv.resume(); //Wait for next signal.
 }
}

Fig. 15-4 Press Button Instructions

Forward

0-9

Backward

Code Review

14DFRobot 15. IR Remote Controlled LED Module

Th ode below starts from the general for the
. Project 12.

: “ ”. This variable is
A number

“ ” represents a
h .
additional buttons on the remote controller.

int

int

15DFRobot 15. IR Remote Controlled LED Module

if
is based on whether data is received from results. Value

if evaluates the second condition whether instructions
from Backward
number displayed is not 0.

if evaluates the third condition whether instructions
from

there should be a for loop before the if evaluation to have variable
loop among 0 to 11.

the program starts
ond event. a code following
every if statement.

Code introductions are now finished. most difficult section
in all of the we have shown and it is difficult to understand

 take it easy - practice makes perfect.

if
if
if

First step:

There are three conditions require consideration. Firstly, the 8-segment
LED module should display 0 to 9 when corresponding press buttons are
pressed.Secondly, every time Backward is pressed, number displayed
decreases by 1 each time until it reaches 0. Thirdly, every time Forward is
pressed, number displayed increases by 1 each time until it reaches 0.

To decide for above conditions, we adopt if statement. What differs from
previous sample codes is that we use if…else if.iWhat is the difference?An
evaluation expression usually follows else if but not for else.However,
neither else nor else if fails to work independently but an if statement is a
must.
Get back to the codes for three conditions mentioned below:

Exercises

16DFRobot 15. IR Remote Controlled LED Module

Make a DIY remote controller that works based on this project.

Using these applications, you can make a movable toy man. You could use servos, explained in the projects
mentioned before, and use different press buttons on the remote controller to have the servos move to
various angles. Use your imagination and have fun.

	Project0 What is Arduino
	Project1 LED Flashing
	Project2 S.O.S distress signal
	Project3 Interactive traffic lights
	Project4 Breathing LED
	Project5 Colour RGB LED
	Project6 Alarm
	Project7 Temperature Alarm
	Project8 Vibration Sensor
	Project9 Light Sensitive LED
	Project10 How to Drive A Servo
	Project11 Controllable Servo
	Project12 Interactive Adjustable RGB LED
	Project13 DIY A Fan
	Project14 IR Remote Controlled LED
	Project15 IR Remote Controlled LED Module

